

अनुक्रमणिका....

संरक्षक

डॉ. प्रकाश चौहान

निदेशक व अध्यक्ष, राभाकास

सलाहकार

विंग कमांडर (से.नि.) विभास सिंह गुप्ता नियंत्रक

मुख्य संपादक

श्री विनोद एम बोथले सह निदेशक

संपादक

श्री राम प्रकाश यादव

संपादक मंडल

डॉ. एन. अपर्णा श्रीमती भावना सहाय श्रीमती जया सक्सेना श्री ई विजय शेखर रेड्डी श्री ओझा अनिल कुमार श्री रामराज रेड्डी

आवरण एवं पत्रिका डिज़ाइन श्री रामराज रेड्डी

आवरण पृष्ठ पर ग्रेटर नोएडा, उत्तर प्रदेश का उपग्रह (कार्टोसैट-2ई) का उच्च विभेदन- बहुस्पैस्ट्रमी चित्र है, जो नगर नियोजन के उद्देश्य से लिया गया है।

राष्ट्रीय सुदूर संवेदन केंद्र

भारतीय अंतरिक्ष अनुसंधान संगठन अंतरिक्ष विभाग, भारत सरकार बालानगर, हैदराबाद-500037

	विषय पृ	ष्ठ सं
*	आमुख	3
*	संदेश	5
*	संपादकीय	7
1.	क्या है मेटावर्स ?	11
2.	आई.ओ.टी. आधारित संवेदकों द्वारा नागपुर शहर का स्मार्ट वायु प्रदूषण मॉनिटरन	14
3.	पानी की महिमा	18
4.	सूक्ष्म -तरंग उपग्रह : ईओएस-04	20
5.	सौर ऊर्जा के क्षेत्र में नव विकास	22
6.	उच्च-विभेदन उपग्रह चित्रों व कृत्रिम बुद्धिमत्ता द्वारा वन-क्षेत्र के बाहर वृक्ष-क्षेत्र का आकलन	T 24
7.	भूविज्ञान से जुड़ी एलोरा की गुफाएं, औरंगाबाद, महाराष्ट्र	28
8.	डीसी जेनरेटर	29
9.	भवनों और अवसंरचना के निर्माण में आंतरिक विद्युतीकरण कार्य	31
10.	सिविल अभियांत्रिकी	35
11.	विभिन्न क्षेत्रों में सुदूर संवेदन की उपयोगिता	36
12.	. अबाधित विद्युत आपूर्ति	38
13.	. भू-स्थानिक प्रौद्योगिकी का उपयोग	39
14.	. डीप लर्निंग एवं सुदूर संवेदन में डीप लर्निंग का महत्व	40
15.	. अरब सागर की मानवजनित प्रदूषित परिस्थितियों में एरोसोल-क्लाउड संबंध:	44
16.	. जैव-विविधता भू-सूचना सुविधा	45
17.	. उर्वरक खनिज के लिए स्रोत/ रिजर्व रॉक को लक्षित करने के लिए सुदूर संवेदन	47
18.	. जैव विविधता अध्ययन - संतरागाछी झील	49

*प्रकाशित सामगी में व्यक्त विचार लेखकों के अपने हैं, आवश्यक नहीं कि उनसे संपादक मंडल की सहमित हो। संवाद के प्रकाशन में संपादक मंडल के साथ-साथ एनआरएससी की मुद्रण सुविधा और एनडीसी का भी विशेष योगदान है। अतः संवाद, मुद्रण सुविधा एवं एनडीसी के प्रति आभारी है। पत्रिका पूर्ण रूप से हिंदी अनुभाग द्वारा तैयार कर आंतरिक रूप से मुद्रित की गई है। यह पत्रिका www.nrsc.gov.in एवं राजभाषा विभाग के ई-पत्रिका पुस्तकालय में भी उपलब्ध है।

प्रलेख नियंत्रण शीट

1	सुरक्षा वर्गीकरण	अप्रतिबंधित					
2	वितरण	सीमित					
3	प्रलेख	क) अंक : 01		तिथि : 29	9/03/2	022	-
4	रिपोर्ट/ प्रलेख का प्रकार	एनआरएससी गृ	ह पत्रिव	ग (तकनीर्क	ो अंक)		
5	प्रलेख नियंत्रण संख्या	एनआरएससी-प्रशासनिक क्षेत्र का.एवं.सा.प्रशामार्च-2022- टीडी0001996-संस्करण 1.0					
6	शीर्षक	संवाद					
7	परितुलन का विवरण	पृष्ठ चित्र तालिकाएं 48 50 8					संदर्भ -
8	लेखक	संवाद तकनीकी अकं—लेखकगण					
9	लेखकों का संबंध	एनआरएससी					
10	जांच प्रक्रिया	संकलित	सग	समीक्षा		अनुमोदित	
10	जाय प्राक्रया	संपादक मंडल	संप	संपादक मुख्य स			ांपादक
11	उत्पत्ति इकाई	एनआरएससी	1				
12	प्रायोजक नाम एवं पता	एनआरएससी					
13	आरंभ करने की तिथि	जनवरी 2022					
14	प्रकाशन की तिथि	29 मार्च 2022					
15		क हर वर्ष इस उद्देश्य के साथ प्रकाशित किया जाता है कि एनआरएस विषयों से संबंधित सामग्री राजभाषा हिंदी में भी उपलब्ध हो तथा तकनी					

एनआरएससी गृह-पित्रका **संवाद** का तकनीकी अंक पाठकों को सौंपते हुए आपर हर्ष हो रहा है। देश आजादी का अमृत महोत्सव मना रहा है और हमलोग विज्ञान एवं तकनीकी क्षेत्र में उन्नति के साथ-साथ राजभाषा के क्षेत्र में भी मुकाम हासिल करने की कोशिश कर रहे हैं, जिसके अन्तर्गत एनआरएससी की समाचार पित्रका- **पिक्सेल 2 पीपुल** को पूर्णतः द्विभाषी में प्रकाशित किया जाता है, जिसमें सभी लेख वैज्ञानिक एवं तकनीकी श्रेणी के होते हैं। एनआरएससी गृह-पित्रका संवाद के सामान्य अंक के अलावा, तकनीकी अंक (आपके समक्ष प्रस्तुत) नियमित रुप से प्रकाशित किया जाता है।

राष्ट्रीय सुदूर संवेदन केंद्र (एनआरएससी) भारतीय अंतिरक्ष अनुसंधान संगठन (इसरो) के घटक केंद्रों में से एक है, जो उपग्रह आंकड़ा अधिग्रहण, अभिलेखीय, संसाधन, प्रसार, सुदूर संवेदन अनुप्रयोग, प्रशिक्षण और क्षमता निर्माण के माध्यम से सुदूर संवेदन कार्यक्रम के भू-खंड के लिए जिम्मेदार है। इसके पांच क्षेत्रीय केंद्र- बेंगलुरु, नागपुर, कोलकाता, जोधपुर और नई दिल्ली में स्थित हैं, जो क्षेत्र/क्षेत्र विशिष्ट सुदूर संवेदन अनुप्रयोग जरूरतों को पूरा करते हैं। शादनगर स्थित भू-केंद्र को सुदूर संवेदन गतिविधियों की पूरी श्रृंखला के संचालन के लिए एक पूर्ण केंद्र के रूप में विकसित किया जा रहा है। अंतिरक्ष गतिविधियों को आमजन तक पहुंचाने एवं छात्रों में जागरुकता फैलाने हेतु एनआरएससी में केंद्रीकृत जनसंपर्क (आउटरीच) सुविधा भी स्थापित की गई है, जिसमें प्रशिक्षण, आउटसोर्सिंग, प्रदर्शनी सुविधा, सूचना कियोस्क, वेब सेवाएं आदि को एकीकृत किया गया है।

तकनीक के विकास के साथ-साथ उसे संबंधित (प्रयोक्ता) तक पहुंचाना महत्वपूर्ण कार्य होता है। एनआरएससी आपदा के समय तुरंत आंकड़े प्रदान करता है, जिससे पूर्व-चेतावनी के साथ राहत एवं बचाव कार्य हेतु संबंधितों को आगाह किया जा सके, जिससे आपदा के दौरान जान-माल के नुकसान को न्यूनतम किया जा सके। बदलते परिदृश्य में प्रकृति और मानव निर्मित परिवर्तनों के कारण विविध समस्याओं की निगरानी और समाधान हेतु अध्ययन भी किया जाता है। जिसे आमजन की भाषा में सहज, सरल और सुबोध रुप में पाठकों तक पहुंचाने की कोशिश की गई है।

पत्रिका में प्रकाशित लेख वैज्ञानिकों एवं तकनीकीविदों के गहन अध्ययन और हिंदी में गहरी रुचि का परिचायक है। मैं सभी लेखकों एवं संपादक-मंडल को बधाई देता हूं और आशा करता हूं कि पाठकगण लेखों से लाभान्वित होंगे।

पत्रिका के सफल प्रकाशन हेतु शुभकामनाएं...

(डॉ. प्रकाश चौहान)

निदेशक एवं अध्यक्ष (राभाकास), एनआरएससी

जैसा कि आपको ज्ञात है कि प्रतिवर्ष एनआरएससी द्वारा गृह-पत्रिका 'संवाद' के तकनीकी एवं सामान्य अंक का प्रकाशन किया जाता है। इसी क्रम में, पत्रिका का तकनीकी अंक-2022 आपके समक्ष प्रस्तुत करते हुए अपार हर्ष की अनुभूति हो रही है।

वास्तव में, 'संवाद' एक ऐसा मंच है जो कार्यालय-पदाधिकारियों के साथ-साथ उनके परिजनों को किसी तकनीक विशेष की जानकारी राजभाषा हिंदी के माध्यम से साझा करने का अप्रतिम अवसर प्रदान करता है। इससे न केवल लेखकगणों को विचार

अभिव्यक्ति हेतु माध्यम की प्राप्ति होती है, अपितु इससे उनकी साहित्यिक प्रतिभा भी निखरती है। साथ ही, सुधी पाठकगणों को सरल, सहज व सुगम भाषा में जटिल तकनीकी जानकारियां प्राप्त करने का भी मौका मिलता है। अतः कह सकते हैं कि गृह-पत्रिका 'संवाद' का प्रमुख प्रयोजन सरल भाषा में तकनीकी साहित्य की उपलब्धता सुनिश्चित करके तकनीक के व्यापक प्रचार-प्रसार में सहयोग करना है। यहां पर यह तथ्य भी गौर करने लायक है कि तकनीकी अंक में जटिलतम तकनीक से लेकर सामान्य तकनीकी जानकारियों को समाविष्ट किया जाता है, जिससे विभिन्न वर्ग के लेखकगण अपना योगदान दे सकते हैं और विभिन्न वर्ग के पाठकगण लाभान्वित हो सकते हैं।

'संवाद' की विषय-सामग्री की गुणवत्ता में उत्तरोत्तर प्रगित भी उल्लेखनीय है, जिसका संपूर्ण श्रेय कार्यालय-कर्मियों के हिंदी भाषा के प्रति स्नेह को जाता है। वास्तव में, 'संवाद' पित्रका अपनी विकासात्मक प्रक्रिया से गुज़र रही है। तदनुसार, इसमें हो रहे बदलाव सुखद अनुभूति प्रदान करता है। 'संवाद' को नये कलेवर व अवतार में ढालने का संपूर्ण श्रेय संपादक-मंडल को जाता है। 'संवाद' का सतत विकास हम सबों का सामूहिक दायित्व है। अतः इस पित्रका में अपेक्षित सुधारों के लिए 'संपादक-मंडल' को अवगत कराएं, तािक इसे एक स्तरीय पित्रका के रूप में प्रभावी ढंग से स्थापित किया जा सके। इस प्रकार, हमारे लिए सभी पाठकों के विचार एवं प्रतिक्रियाएं शिरोधार्य है।

गृह-पत्रिका 'संवाद' के इस तकनीकी अंक के प्रकाशन से प्रत्यक्ष या परोक्ष रूप से जुड़े सभी सदस्यों को हार्दिक बधाई देता हूँ, जिनके अथक प्रयासों से इस अंक का प्रकाशन संभव हुआ है और इस अंक की सफलता की कामना करता हूँ। मैं यह भी कामना करता हूँ कि 'संवाद' का प्रकाशन इसी प्रकार से सदैव अनवरत रूप से जारी रहेगा।

शुभकामनाएं सहित...

(विंग कमाण्डर (से.नि.) विभास सिंह गुप्ता)

नियंत्रक, एनआरएससी

एनआरएससी की गृह-पत्रिका "संवाद" का तकनीकी अंक अपने सुधी-पाठकों को सौंपते हुए मुझे अत्यंत खुशी हो रही है। वास्तव में कोई भी पत्रिका व्यक्ति के अंदर छिपी हुई लेखन क्षमता व कुशलता, सामाजिक- चेतना, सृजनात्मकता और मूलतत्व को प्रतिबिंबित करती है। हमने इस अंक में अपने लेखकों की सृजनात्मकता और तकनीक के बीच भाषा के साथ तालमेल बनाने की कोशिश की है। गत तीन वर्षों से कोरोना ने सबको प्रभावित किया है। कोविड-19 के कारण उत्पन्न प्रतिकूल परिस्थितियों को भी, हमने अनुकुल बनाया है। इसके डिजिटल स्वरूप से पाठकों को परिचित कराया है। इस अंक में

भी हमने पत्रिका की सृजनात्मकता, पठनीयता स्तर को बनाए रखने के साथ-साथ विविध विषयों को समाहित करने की कोशिश की है।

इस अंक में एक ओर समसमायिक लेख- मेटावर्स की आभासी दुनिया से पाठकगण को रुबरु करवाया है, तो दूसरी ओर कृत्रिम बुद्धिमता पर आधारित कई लेखों के माध्यम से बदलते परिदृश्य के बारे में आगाह किया है। इसी क्रम में, आज की ज्वलंत समस्या-वायु प्रदूषण के रोकथाम और निगरानी हेतु आई ओ टी आधारित संवेदकों द्वारा नागपुर शहर का स्मार्ट वायु प्रदूषण मॉनिटरन मॉडल स्थापित किया है। उच्च विभेदन उपग्रह चित्रों एवं कृत्रिम बुद्धिमता द्वारा वन क्षेत्र के बाहर वृक्ष-क्षेत्र का आकलन किया है, जिसमें राष्ट्रीय स्तर पर कृषि-वानिकी हेतु पायलट (संयुक्त राष्ट्र के खाद्य और कृषि संगठन द्वारा प्रयोजित) परियोजना के माध्यम से भारत के पांच राज्यों (कर्नाटक, राजस्थान, उत्तर-प्रदेश, हरियाणा और असम) के चुने हुए जिलों का एकीकृत कृषि-वानिकी मानचित्रण मॉडल के उभरते विज्ञान के विविध आयामों से पाठकों का ज्ञान-वर्धन किया है।

जन-उपयोगी विषय-वस्तु जैसे- सिविल अभियांत्रिकी, भवनों और अवसंरचना के निर्माण में आंतरिक विद्युतीकरण कार्य, डीसी जेनरेटर, अ-बाधित विद्युत आपूर्ति, सौर ऊर्जा के क्षेत्र में नव विकास, जल की मिहमा आदि के बारे में जानकारी दी गई है। साथ ही साथ सुदूर संवेदन के विविध आयामों- सूक्ष्मतरंग उपग्रह, उर्वरक खिनज के लिए स्रोत, डीप लिनेंग, जैव-विविधता-भू सूचना सुविधा के साथ संतरागाछी झील के जैव-विविधता अध्ययन को शामिल किया गया है। इस अंक में अधिकतर लेख हमारे नव नियुक्त कार्मिकों द्वारा लिखे गए हैं। सभी लेख तकनीकी होते हुए भी सरल हिंदी में प्रस्तुत किए गए हैं। मैं सभी लेखकों को शुभकामनाएं देते हुए उनके प्रति आभार प्रकट करता हूं।

शुभकामनाएं सहित....

विनोद हो श्रले (विनोद एम. बोथले) सह-निदेशक, एनआरएससी एवं मुख्य संपादक, संवाद

क्या है मेटावर्स ?

खुशबू मिर्ज़ा , आआरएससी, दिल्ली

मेटावर्स सामाजिक कनेक्शन पर केंद्रित 3D आभासी दुनिया का एक नेटवर्क है। ये इंटरनेट के उस चरण का विकास है, जहां पर वास्तविकता को एक वर्चुअल रूप दिया जाएगा। इस वर्चुअल दुनिया में हमारे आपके और कई लोगों के वर्चुअल अवतार या कहें प्रतिरूप होंगे, जिनसे हम 3D रूप में इंटरेक्ट करेंगे। हालांकि, मेटावर्स पर एक दूसरे के साथ वर्चुअल रूप से मिलने के लिए हमारे पास AR (augmented Reality) या वीआर (Virtual Reality) हेडसेट का होना बहुत जरूरी होगा। आज दुनिया की बड़ी टेक जायंट कंपनियां मेटावर्स में बिलियंस ऑफ डॉलर्स का इन्वेस्टमेंट कर रही हैं।

शब्द "मेटावर्स" की उत्पत्ति नील स्टीफेंसन द्वारा रचित 1992 के विज्ञान कथा उपन्यास स्नो क्रैश (Snow crash) में "मेटा" और "ब्रह्मांड" के एक बंदरगाह के रूप में हुई है। इस उपन्यास में एक 3D आभासी दुनिया प्रस्तुत की गई है जिसमें लोग अवतार के रूप में एक दूसरे के साथ और कृत्रिम रूप से बुद्धिमान एजेंटों (Artificial Intelligent Agents) के साथ बातचीत कर सकते हैं।

लोकप्रिय वर्चुअल वर्ल्ड प्लेटफॉर्म, जैसे सेकेंड लाइफ (एक ऑनलाइन गेम), के उपयोग के लिए विभिन्न मेटावर्स विकसित किए गए हैं। कुछ मेटावर्स की पुनरावृत्तियों में आभासीय स्थानों, भौतिक स्थानों और आभासी अर्थव्यवस्थाओं के बीच एकीकरण है। भविष्य की किसी भी बड़ी तकनीक की तरह, जो कि अभी तक अस्तित्व में है ही नहीं, बहुत से लोगों ने मेटावर्स पर भी अपनी परिभाषाएं देने का प्रयास किया है। निम्नलिखित गुणों को समझने से मेटावर्स को समझने में सहायता मिलेगी

आभासी दुनिया: यह मेटावर्स की सबसे महत्वपूर्ण विशेषता है। आप

कंप्यूटर, गेमिंग कंसोल, मोबाइल, पहनने योग्य तकनीक या अन्य डिवाइस का उपयोग करके 3D ग्राफ़िक्स और आवाज़ का अनुभव करते हुए मेटावर्स को एक्सप्लोर कर सकते हैं। इसके माध्यम से आप मेटावर्स में खुद को अधिक उपस्थित महसूस करते हैं, और संभवत: रोजमर्रा की दुनिया में कम (जहां आपका शरीर रहता है)।

आभासी वास्तविकता: इसके लिए आपको वर्चुअल रियलिटी हेडसेट चाहिए। यहां विचार यह है कि आप आभासी दुनिया में डूब जाते हैं, इसलिए आप और भी अधिक उपस्थित महसूस करते हैं - कम से कम जब तक आप टेबल कुर्सी इत्यादि जैसे रोजमर्रा की दुनिया में रहने वाली किसी चीज से टकराते नहीं हैं।

अन्य लोग: मेटावर्स एक सामाजिक स्थान है। वहाँ बहुत से अन्य लोग होते हैं, जिन्हें अवतारों के रूप में दर्शाया गया है। इनमें से कुछ अवतार बॉट, वर्चुअल एजेंट और आर्टिफिशियल इंटेलिजेंस की अभिव्यक्तियाँ हो सकते हैं। आप अन्य लोगों के साथ घूम सकते हैं या एक साथ काम भी कर सकते हैं। मेटावर्स के प्रशंसकों और कुछ शोधकर्ताओं का मानना है कि मेटावर्स में वीडियो कॉन्फ्रेंसिंग की तुलना में संचार अधिक स्वाभाविक हो सकता है। उदाहरण के लिए, आप जिसे संबोधित कर रहे हैं, उसके साथ आई कान्टैक्ट बना सकते हैं (आपका अवतार किसी अन्य व्यक्ति को देखने के लिए अपना सिर घुमा सकते हैं)। बातचीत शुरू करने के लिए आपका अवतार भी चल सकता है और किसी और के अवतार के बगल में बैठ सकते हे।

सतत उपलब्धता: इसका मतलब ये है कि जब भी आप इसे देखना चाहते हैं तो आभासी दुनिया उपलब्ध है। आप नई आभासी इमारतों या अन्य वस्तुओं को जोड़कर इसे बदल सकते हैं, और महत्वपूर्ण बात यह है कि अगली बार जब आप यात्रा करेंगे तो परिवर्तन यथावत रहेंगे। आप मेटावर्स में मनचाहा आवास लेने में भी सक्षम हो सकते हैं और इसके कुछ हिस्से के मालिक भी हो सकते हैं। मेटावर्स आपके उपयोगकर्ता-जिनत सामग्री पर निर्भर करेगा, जिसमें आपकी डिजिटल रचनाएं और व्यक्तिगत कहानियां शामिल होंगी - उसी तरह जैसे सोशल मीडिया पर आज होता है।

वास्तविक दुनिया से जुड़ाव: मेटावर्स के कुछ संस्करणों में, आभासी दुनिया में उपस्थित आभासी सामग्री, वास्तव में वास्तविक दुनिया में उपस्थित वास्तविक सामग्री को दर्शाती है। उदाहरण के लिए आप वास्तविक दुनिया में एक वास्तविक ड्रोन को चलाने के लिए मेटावर्स में एक वर्चुअल ड्रोन उड़ा सकते हैं। लोग वास्तविक और आभासी दुनिया के "डिजिटल जुड़वाँ" (Digital Twins) होने की बात करते हैं।

कैसी होगी मेटावर्स की दुनिया

आज जिस तरह हम वास्तविक दुनिया में एक दूसरे के साथ मिलते -जुलते हैं। उसी तरह मेटावर्स की दुनिया में हम संवर्धित वास्तविकता (Augmented Reality) में एक दूसरे के साथ मिलना जुलना करेंगे। यही नहीं इस वर्चुअल दुनिया में हम और हमारे दोस्तों के वर्चुअल 3D अवतार (Avatars) होंगे, जिनके साथ हम मेटावर्स में वह सब कर सकेंगे, जिसे हम वास्तविक दुनिया में कर सकते हैं। यहां हम अपने रहने के लिए वर्चुअल घर और जमीन खरीद सकेंगे। मेटावर्स पर हम अपने दोस्तों के साथ पार्क में एन्जॉय कर सकेंगे, उनके साथ खेल का लुफ्त उठा सकेंगे, फिल्में देख सकेंगे। हालांकि, इन सब चीजों को अंजाम देने के लिए हमारे पास एआर या वीआर बॉक्स का होना जरूरी होगा।

मेटावर्स में हम क्या कर सकते हैं, और कितनी जल्दी?

विभिन्न संगठनों के पास शायद अपने स्वयं के संस्करण होंगे या यहां तक कि मेटावर्स के स्थानीय संस्करण भी हो सकते है , लेकिन ये बात तो तय है कि इंटरनेट की तरह, वे सभी आपस में जुड़े रहेंगे, ताकि आप एक से दूसरे में जा सकें।

यह संभावना है कि कुछ चीजें दूसरों की तुलना में तुरंत अधिक आकर्षक और व्यावहारिक होने वाली हैं | गेम खेलना जिसमें से सर्वप्रथम है, क्योंकि कई गेमर्स पहले से ही ऑनलाइन गेमिंग का आनंद लेते हैं, और कुछ गेम, कुछ हद तक, पहले से ही मेटावर्स में प्रवेश कर चुके हैं।

दूसरों के साथ मिल पाने में सक्षम होने का विचार, और यह महसूस करना कि आप वास्तव में उनके साथ व्यक्तिगत रूप से उपस्थित हैं, भी आकर्षक है - विशेष रूप से आज के इस महामारी के युग में।

साल 2016 से पहले भारत में कई बड़ी कंपनियों ने टेलीकॉम की दुनिया में अपना राज स्थापित कर रखा था। हालांकि, जियो के आते ही पूरी टेलीकॉम इंडस्ट्री का स्वरूप बदल गया। ऐसे में ये कयास जताए जा रहे हैं कि माइक्रोसॉफ्ट मेटावर्स की दुनिया में बाजी मार सकता है। मेटावर्स के क्षेत्र में माइक्रोसॉफ्ट कई शानदार काम कर रहा है। मेटावर्स की दुनिया में माइक्रोसॉफ्ट का मेश प्लेटफॉर्म क्रांति लेकर आ सकता है। इस प्लेटफॉर्म को माइक्रोसॉफ्ट ने साल 2021 के अपने इग्नाइट इवेंट में लॉन्च किया था। मेश ऐप पर आपको जबरदस्त होलोग्नाफिक रेंडिंग देखने को मिलती है। अब तक इस तकनीक के आस पास भी कोई नहीं है।

वहीं फेसबुक ने भी मेटावर्स की दुनिया में कदम रख दिया है। वो बड़े पैमाने पर इस क्षेत्र में इन्वेस्टमेंट कर रहा है। हालांकि, मेटावर्स की दौड़ में जो कंपनी सबसे आगे चल रही है। वो माइक्रोसॉफ्ट है। ऐसे में संभावना जताई जा रही है कि सोशल मीडिया पर फेसबुक का जो एकाधिकार है। वो मेटावर्स के आने के बाद माइक्रोसॉफ्ट के पास जा सकता है

मेटावर्स में सॉफ्टवेयर, हार्डवेयर, एसेट रिक्रिएशन, इंटरफेस रिक्रिएशन, प्रोडक्ट और फाइनेंशियल सर्विसेस जैसी कई कैटेगरी होती हैं। इन सभी कैटेगरी पर सैकड़ों कंपनियां काम कर रही हैं। फेसबुक के अलावा गूगल, एपल, स्नैपचैट और एपिक गेम्स वो बड़े नाम हैं, जो मेटावर्स पर कई सालों से काम कर रहे हैं। अनुमान है कि 2035 तक मेटावर्स 74.8 लाख करोड़ रुपए की इंडस्ट्री हो सकती है।

मेटावर्स बनेगा दुनिया का बड़ा बिजनेस प्लेटफॉर्म :

मेटावर्स एक वर्चुअल दुनिया होगी। संवर्धित वास्तविकता की इस दुनिया में हम सभी का एक वर्चुअल प्रतिरूप होगा। आज जिस तरह हम गेमिंग दुनिया में अपने कैरेक्टर के लिए उपकरण और उसके अलग अलग कपड़े खरीदते हैं। उसी तरह मेटावर्स की दुनिया में लोग अपने प्रतिरूप के लिए कपड़े, जूते और हेयर स्टाइल को सुधारने के लिए पैसे खर्च करेंगे। उसी के समानांतर मेटावर्स पर वो लोग भी मौजूद होंगे, जो लोगों के डिजिटल अवतारों को कपड़े बेचने, हेयर स्टाइल सुधारने की सर्विस ऑफर करेंगे। ऐसे में मेटावर्स लोगों के लिए एक बहुत बड़ा बिजनेस प्लेटफॉर्म भी बनने वाला है।

कपड़ों, जूतों के कई बड़े ब्रांड्स मेटावर्स की दुनिया में कदम रखने की प्लानिंग करने लगे हैं। जल्द ही उनके वर्चुअल शॉप इस प्लेटफॉर्म पर आ जाएंगे। मेटावर्स पर इन चीजों को आप एनएफटी (Non Fungible Tokens) की सहायता से खरीद सकेंगे। ऐसे

में इस प्लेटफॉर्म पर एक तरफ कई लोग सेवाओं का लाभ उठाएंगे। वहीं दूसरी तरफ कई लोग इन सेवाओं को बेचकर खूब पैसा कमाएंगे।

मेटावर्स पर आप अपने डिजिटल अवतारों (Avatars) के साथ बिजनेस मीटिंग का हिस्सा बन सकेंगे। आप और आपके सहयोगियों के हूबहू वर्चुअल रूप होंगे। आप उनके साथ मीटिंग कर सकेंगे। इसके अलावा, आप मेटावर्स प्लेटफॉर्म पर अपने ऑफिस के सहकर्मियों के साथ काम भी कर पाएंगे। मेटावर्स पर काम करते वक्त आपको शानदार अनुभव मिलेगा। इस Augmented रियलिटी की दुनिया में आप अपने साथी कर्मचारियों के साथ पहाड़ों, निदयों या अन्य वर्चुअल सुंदर जगहों पर काम करने का अनुभव पा सकेंगे।

इसके अलावा, मेटावर्स के आने के बाद एजुकेशन सेक्टर पूरी तरह बदल जाएगा। उस दौरान स्कूल में जाने की प्रासंगिकता पूरी तरह खत्म हो जाएगी। बच्चे बस एआर या वीआर बॉक्स अपनी आंखों पर लगाकर स्कूल का पूरा अनुभव पा सकेंगे। भविष्य के इस बदलाव को देखकर स्कूलों को भी बदलना होगा। उन्हें अपने स्कूल का हूबहू प्रतिरूप मेटावर्स पर लाना होगा। आज कई बड़े ओटीटी प्लेटफॉर्म, न्यूज एजेंसियां, कपड़ों के बड़े ब्रांड्स आदि अपनी सर्विस को मेटावर्स पर लाने की पूरी तैयारी कर रहे हैं।

अवलोकन:

मेटावर्स के आने के बाद इंसान अपने में ही सीमित रहने लगेंगे। लोग वास्तविक तौर पर एक दूसरे से ना मिलकर वर्चुअली ही मीट करेंगे। इससे ज्यादातर समय इंसान अकेला ही रहेगा। मेटावर्स जब उन्नति करेगा, उस दौरान इंसान वास्तविक और आभासी दुनिया में फर्क करना भूल सकता है। ज्यादातर समय अकेले रहने से इंसान डिप्रेशन और कई तरह की मानसिक बीमारियों से ग्रस्त होगा।

स्टीफेंसन का मेटावर्स का मूल विज़न बहुत रोमांचक था, लेकिन उसमें ऑनलाइन और वास्तविक दुनिया दोनों के लिए नुकसान की संभावनाएं थी जिसमें लत लग जाना, अपराधिकता, लोकतांत्रिक संस्थानों का अपक्षरण सम्मिलित थे | दिलचस्प बात यह है कि स्टीफेंसन का मेटावर्स ज्यादातर बड़े संघटनों के स्वामित्व में था, जिसमें सरकारों को महत्त्वहीन कर दिया गया था।

गोपनीयता, बोलने की स्वतंत्रता और ऑनलाइन क्षतियों को लेकर दुनिया भर की बड़ी तकनीकि कंपनियों और सरकारों के बीच मौजूदा तनाव को देखते हुए, हमें गंभीरता से विचार करना चाहिए कि हम किस प्रकार का मेटावर्स बनाना चाहते हैं, और इसका स्वामित्व किस के पास होगा और इसे कौन विनियमित करेगा।

आई.ओ.टी. आधारित संवेदकों द्वारा नागपुर शहर का स्मार्ट वायु प्रदूषण मॉनिटरन

अंजु बाजपई, टी पी गिरीश कुमार, डॉ जी श्रीनिवासन एवं डॉ सी एस झा, आरआरएससी ,नागपुर एवं एनआरएससी, हैदराबाद

1. भूमिका :

वायु (प्रदूषण से बचाव व नियंत्रण) अधिनियम, 1981 के अनुसार, वायु प्रदूषण से संबंधित तकनीकी और सांख्यिकीय आंकड़ों का संग्रह, संकलन और प्रकाशन प्रदूषण की रोकथाम और नियंत्रण के प्रमुख उद्देश्यों में से एक है। केंद्रीय प्रदूषण नियंत्रण बोर्ड द्वारा 18 नवंबर 2009 को राष्ट्रीय परिवेशी वायु गुणवत्ता मानकों और दिशानिर्देशों को भी अधिसूचित किया गया है। वायु गुणवत्ता की निगरानी के लिए COx, SOx, NOx, O3, पार्टिकुलेट मैटर, हाइड्रोकार्बन आदि की निगरानी की आवश्यकता होती है। उच्च औद्योगीकरण और बड़ी संख्या में परिवहन वाहनों के कारण शहरी क्षेत्रों में उत्सर्जन में वृद्धि के परिणामस्वरूप; शहर में प्रदूषण खतरनाक स्तर पर पहुंच रहा है। इस प्रकार किफायती आई.ओ.टी. प्लग और सेंस डिवाइस का विकास बहुत प्रभावी होगा क्योंकि वर्तमान में उपलब्ध सेंसर नोड्स की लागत काफी अधिक है। इन सेंसर उपकरणों का उपयोग प्रदूषकों को स्थानिक-लौकिक तरीके से ट्रैक करने के लिए किया जा सकता है।

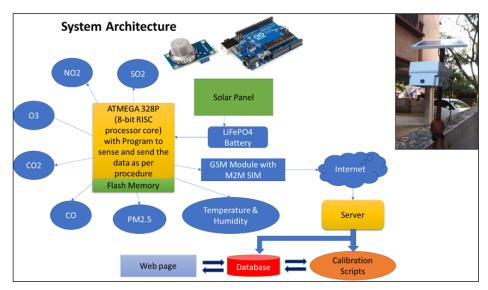
वायु प्रदूषण बढ़ती शहरी आबादी के जीवन की गुणवत्ता और स्वास्थ्य को प्रभावित करने वाले सबसे महत्वपूर्ण कारकों में से एक है। कई शहरों में वाहनों और उद्योगों से निकलने वाले उत्सर्जन से वायु प्रदूषित होती है। जब इन स्रोतों से गैसें और कण उच्च सांद्रता में हवा में जमा होते हैं, तो वे मानव स्वास्थ्य और पर्यावरण के लिए हानिकारक हो सकते हैं।

वायु के विभिन्न तत्वों में वायुमंडलीय संदूषण (Contamination) ग्लोबल वार्मिंग और अम्ल वर्षा के खतरनाक प्रभावों की ओर ले जाता है जो जनसंख्या के कल्याण के लिए एक महत्वपूर्ण आशंका बन गए हैं। प्रकृति में इस तरह के प्रतिकूल असंतुलन से बचने के लिए एक वायुमंडलीय प्रदूषण निगरानी प्रणाली अत्यंत महत्वपूर्ण है।

वायु गुणवत्ता को पृथ्वी की सतह के पास गैसों और कणों की वायुमंडलीय संरचना द्वारा परिभाषित किया जाता है। यह संरचना स्थानीय योगदान (प्रदूषकों के उत्सर्जन), रसायन विज्ञान और परिवहन प्रक्रियाओं पर निर्भर करती है; यह स्थान और समय में अत्यधिक परिवर्तनशील है। प्रमुख निचले-क्षोभमंडलीय प्रदूषकों में O3, एरोसोल (जैसे, PM), और O3 अग्रदूत NOx (= NO + NO2) और VOC शामिल हैं।

2. वायु प्रदूषण संवेदी उपकरण के विकास की प्रक्रिया

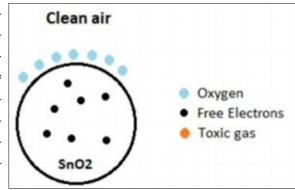
2.1 IoT संवेदक डिज़ाइन


स्मार्ट वायु प्रदूषण निगरानी प्रणाली वास्तविक समय मौसम निगरानी में नवीनतम IOT अनुप्रयोगों में से कम से कम एक को शामिल करती है। यह उपयोगकर्ताओं को मोबाइल नेटवर्क द्वारा कवर किए गए क्षेत्रों में विभिन्न स्थानों से मौसम डेटा की वास्तविक काल अभिगम प्रदान करता है। तापमान, आईता और कार्बन मोनोऑक्साइड, ओजोन, कार्बन डाइऑक्साइड, सल्फर डाइऑक्साइड जैसी गैसों और वायु गुणवत्ता पीएम 2.5 जैसी मौसम की जानकारी पर्यावरण निगरानी प्रणाली से साथ-साथ एकत्र की जाती है। जीपीआरएस नेटवर्क द्वारा एम2एम सिम का उपयोग करके सभी डेटा एकत्र किया जाता है और सर्वर को भेजा जाता है। इस प्रणाली में हम एक स्थिर और गैर-ज्वलनशील लिथियम आयरन फॉस्फेट (LiFePO4) बैटरी का उपयोग कर रहे हैं। सभी नियंत्रण Atmega 328 द्वारा किया जाता है जिसमें एक संशोधित हार्वर्ड आर्किटेक्चर 8-बिट अल्प निर्देश सेट कंप्यूटर (RISC) प्रोसेसर कोर है। यह बिल्ट-इन जीपीआरएस मोबाइल नेटवर्क कनेक्टिविटी के साथ सेंसर की व्यापक अनुकूलता प्रदान करता है। सिस्टम में प्रयुक्त सेंसर हैं - MQ-135, MQ-131, SO2 सेंसर, MQ-7, DHT-11, PM2.5 सेंसर (चित्र 1 देखें)।

गैस सेंसर कई प्रकार के होते हैं, लेकिन आमतौर पर एमक्यू टाइप गैस सेंसर का उपयोग किया जाता है। गैस सेंसर एक ऐसा उपकरण है जो वातावरण में गैसों की उपस्थिति या सांद्रता का पता लगाता है। गैस की सांद्रता के आधार पर सेंसर द्वारा सेंसर के अंदर सामग्री के प्रतिरोध को बदलकर एक अनुरूपी विभवांतर पैदा करता है, जिसे आउटपुट वोल्टेज के रूप में मापा जा सकता है। इस वोल्टेज मान के आधार पर गैस के प्रकार और सांद्रता का अनुमान लगाया जा सकता है। सेंसर किस प्रकार की गैस का पता लगा सकता है यह सेंसर के अंदर मौजूद सेंसिंग सामग्री पर निर्भर करता है। इन तुलिनत्रों को गैस सांद्रता के एक विशेष सीमित मान के लिए सेट किया जा सकता है। जब गैस की सांद्रता निश्चित मान से अधिक हो जाती है तो डिजिटल पिन उच्च वोल्टेज प्रदान करता है। एनालॉग पिन का उपयोग गैस की सांद्रता को मापने के लिए किया जाता है।

गैस संवेदकों के विभिन्न प्रकार:

गैस सेंसरों को आम तौर पर विभिन्न प्रकारों में वर्गीकृत किया जाता है, जो उसे बनाए जाने में प्रयुक्त संवेदन तत्व के प्रकार के आधार पर होता है। सेंसिंग तत्व के आधार पर विभिन्न प्रकार के गैस सेंसर का वर्गीकरण नीचे दिया गया है जो आमतौर पर विभिन्न अनुप्रयोगों में उपयोग किए जाते हैं। हमने इस सिस्टम में धातु ऑक्साइड संवेदक का उपयोग किया है।


चित्र 1 - ют सेंसर का उपयोग कर वायु प्रदूषण निगरानी उपकरण प्रणाली वास्तुकला

- 🛨 धातु ऑक्साइड आधारित गैस संवेदक
- ★ प्रकाशिक गैस संवेदक
- → विद्युत रसायनी गैस संवेदक
- धारिता आधारित गैस संवेदक
- उष्मापी गैस संवेदक
- ध्वनिकी आधारित गैस संवेदक

2.2 गैस संवेदक की कार्यप्रणाली

गैस सेंसर की गैसों का पता लगाने की क्षमता करंट के संचालन के लिए केमिरेसिस्टर पर निर्भर करती है। सबसे अधिक इस्तेमाल

किया जाने वाला केमिरेसिस्टर टिन डाइऑक्साइड (SnO2) है जो एक n-प्रकार का अर्धचालक है जिसमें मुक्त इलेक्ट्रॉन होते हैं (जिसे दाता भी कहा जाता है)। आम तौर पर वातावरण में ज्वलनशील गैसों की तुलना में ऑक्सीजन अधिक होती है (चित्र 2 देखें)। ऑक्सीजन के कण SnO2 में मौजूद मुक्त इलेक्ट्रॉनों को आकर्षित करते हैं जो उन्हें SnO2 की सतह पर धकेलते हैं चूंकि कोई मुक्त इलेक्ट्रॉन उपलब्ध नहीं हैं, आउटपुट करंट शून्य होगा। नीचे दिए गए gif ने ऑक्सीजन अणुओं (नीला रंग) को SnO2 के अंदर मुक्त इलेक्ट्रॉनों (काले रंग) को आकर्षित करते हुए दिखाया गया है और मुक्त इलेक्ट्रॉनों के होने से रोकने पर करंट का संचालन नहीं होगा।

चित्र 2 – गैस संवेदक की कार्यप्रणाली

जब सेंसर को विषाक्त या ज्वलनशील गैसों के वातावरण में रखा जाता

है, तो यह कम होने वाली गैस (नारंगी रंग) अवशोषित ऑक्सीजन कणों के साथ प्रतिक्रिया करती है और ऑक्सीजन और मुक्त इलेक्ट्रॉनों के बीच रासायनिक बंधन को तोड़ती है और इस प्रकार मुक्त इलेक्ट्रॉनों को मुक्त करती है। चूंकि मुक्त इलेक्ट्रॉन अपनी प्रारंभिक स्थिति में वापस आ गए हैं, वे अब करंट का संचालन करते है, यह संचालन SnO2 में उपलब्ध मुक्त इलेक्ट्रॉनों की संख्या के समानुपाती होगा, यदि गैस अत्यधिक विषाक्त है तो अधिक मुक्त इलेक्ट्रॉन उपलब्ध होंगे।

2.3 उपकरण की कार्यविधि :

यह प्रणाली सौर सेल का उपयोग करके एक रिचार्जेबल बैटरी का उपयोग करके संचालित होती है। सिस्टम आम तौर पर स्लीप मोड में होता है और जब डेटा भेजना होता है तो यह सिक्रय हो जाता है और सब कुछ इनिशियलाइज़ हो जाता है और सेंसर 5 मिनट में गर्म होगा और उसके बाद यह सेंसर से रीडिंग लेना शुरू कर देता है। सेंसर से डेटा अधिग्रहण और समय इस प्रकार है; DHT 11-5 से 10 सेकंड, SO2 सेंसर - 30 सेकंड, ओजोन - 10 सेकंड, पीएम 2.5-10 सेकंड, NOx-2.5 मिनट। आम तौर पर, सेंसर से डेटा अधिग्रहण का समय 5 से 7 मिनट होता है, क्योंकि प्रत्येक सेंसर के पास डेटा भेजने में अपनी देरी होती है और यदि सेंसर से डेटा प्राप्त नहीं होता है तो यह सेंसर से डेटा को फिर से पढ़ने का प्रयास करता है। डीएचटी सेंसर के मामले में सेंसर से प्राप्त डेटा रीडिंग का औसत है जो, यह सीधे तापमान और आईता के मूल्य से प्राप्त होता है और अन्य सेंसर में, यह औसतन 10 से 100 मान लेता है। सभी संवेदकों से डेटा प्राप्त करने के बाद जीएसएम मॉड्यूल आरंभ हो जाता है। यहां हमने जीपीआरएस कनेक्शन के लिए एम2एम सिम कार्ड के साथ जीएसएम मॉड्यूल का उपयोग किया है। इस सिस्टम में सर्वर पर डेटा भेजने के लिए जीपीआरएस जिम्मेदार होता है।

तालिका-1 विभिन्न घटकों की अनुक्रिया, प्रचालनीय रेंज एवं विभेदन

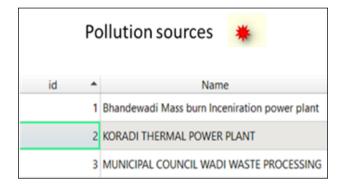
वायु ता	पमान 					
प्रचालनीय रेंज	0°C to50°C					
विभेदन	1°C					
सापेक्षिक आर्द्रता						
प्रचालनीय रेंज	20% से 90% आरएच					
विभेदन	1%					
सल्फर डाइ	ऑक्साइड					
अनुक्रिया काल	<30 सेकंड					
रेंज	0 to 20 पीपीएम					
विभेदन	०.15 पीपीएम					
कार्बन मोनोऑक्साइड						
आउटपुट	2.5V-4.3V in 150 पीपीएम					
रेंज	10-500 पीपीएम					
वायु गुणता संवे	दक (PM2.5)					
जांच रेंज	10 - 500 पीपीएम					
अनुक्रिया काल	5 सेकंड					
कार्बन डाइ	ऑक्साइड					
गति	0 to 20m/S					
रेंज	10 पीपीएम -1000 पीपीएम					
ओज़ोन	संवेदक					
रेंज	10-1000पीपीबी					
आउटपुट	□1.0Vin 200 पीपीबी					
पावर अ						
बैटरी	7.3V/12AH					
सौर पैनल	12v 20 वॉट					

विकास वातावरण: निम्न तालिका-2 विकास वातावरण दर्शाती है:

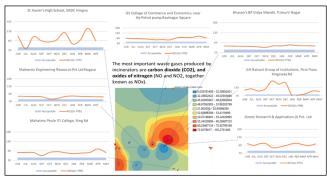
माइक्रोकंट्रोलर	Atmega 328P
प्रोसेसर	8-bit RISC processor core
प्रोग्रामिंग लैंग्वेज	C++

परिणाम

विकसित IOT उपकरण नागपुर शहर में 10 स्थानों पर स्थापित हैं। नागपुर में प्रदूषण के तीन मुख्य स्रोत हैं- भंडेवाड़ी व्यापक भस्मीकरण पावर प्लांट, कोराडी/खापरखेड़ा थर्मल पावर प्लांट, नगर परिषद वाडी अपशिष्ट प्रसंस्करण केंद्र जो चित्र 3 और 4 में दिखाया गया है।


प्रदूषण स्रोतों की अधिक संख्या, औद्योगीकरण और बड़ी संख्या में परिवहन वाहनों के कारण नागपुर में बढ़े हुए उत्सर्जन के परिणामस्वरूप; प्रदूषण शहर में अनुमेय सीमा तक पहुँच रहा है (चित्र 5 देखें)।

इस प्रकार किफायती IOT प्लग और सेंस उपकरण का विकास बहुत प्रभावी है क्योंकि वर्तमान में उपलब्ध वाणिज्यिक संवेदक की लागत काफी अधिक है। इन संवेदक उपकरणों का उपयोग प्रदूषकों को स्थानिक-लौकिक तरीके से अनुवर्तन करने के लिए किया जा सकता है।



id	Name of si	Device ID	Lat Long
1	ISRO Regional Remote Sensing Centre	2	21.152006, 79.027542
2	St Xavier's High School	3	21.116046, 79.011359
3	Ozone Research & Applications (India) Private Limited (ORAIPL) ,Kachimet	16	21.142078, 79.006527
4	GS College of Commerce and Economics, near Hp Petrol pump, Ravinagar Square	17	21.149354, 79.063243
5	GH raisoni Group of Institution, kingsway road	11	21.154028, 79.084999
6	Mahatma Phule Shaskiya Audyogik Prashikshan Sanstha ITI	5	21.106822, 79.101523
7	Bhavan's BP Vidya Mandir, Trimurti Nagar	9	21.114762, 79.038329
8	vidya mandir high school, near koradi thermal power plant	1	21.241164, 79.082666
9	Progressive multipurpose society school,itwari railway station rd	12	21.174484, 79.117629
10	Malxenia Engineering Resource Pvt Ltd Ramnagar	4	21.140273, 79.051262
11	MSRDC Vidyapeeth	6	21.145829298396833, 79.08086187420523

चित्र 3 – नागपुर में स्थापित स्थान एवं प्रदूषण के स्रोत

चित्र ४ – भांडेवाडी व्यापक भस्मीकरण पावर संयंत्र – प्रदुषण का स्रोत

चित्र 5 – नागपुर के विभिन्न स्थानों पर NO2 प्रदूषण स्तर एवं उसके स्थानिक परिवर्तन

उपसंहार:

IOT का उपयोग करके वायु प्रदूषण संवेदन उपकरण बनाने के लिए एक बहुत ही किफायती तरीका स्थापित किया गया है। इसका उपयोग उचित योजना और निर्णय लेने के लिए बड़े शहरों में प्रदूषकों की निगरानी के लिए किया जा सकता है।

आभार:

एनआरएससी के निदेशक डॉ. राज कुमार को उनके प्रोत्साहन और समग्र मार्गदर्शन के लिए लेखक धन्यवाद देना चाहते हैं। इस कार्य को आंशिक रूप से क्षेत्रीय सुदूर संवेदन केंद्र-मध्य (नागपुर) ,राष्ट्रीय सुदूर संवेदन केंद्र से अनुदान द्वारा समर्थित किया गया था।

पानी की महिमा

सत्येन्द्र सिंह रघुवंशी, एनआरएससी, हैदराबाद

किताबों में पढ़ा, 'पानी' यानी H2O (हाइड्रोजन एंव ऑक्सीजन की कैमिस्ट्री), हालांकि पीने एवं अन्य कार्यों में हम रोजाना इस्तेमाल करते हैं। लेकिन जीवन की कल्पना के लिये सबसे महत्वपूर्ण घटक जिसे अंतिरक्ष वैज्ञानिक भी अन्य ग्रहों एवं उपग्रहों पर खोजने की कोशिश कर रहे हैं। इसकी व्यापकता को देखें तो - आकाश में पानी (बादल) पाताल में पानी (भूमिगत जल), पृथ्वी के 70% भाग में पानी, मानव शरीर में भी लगभग 70% पानी, खाने में, नहाने में एवं पीने में पानी।

पीने का पानी- यानी पीने योग्य पानी, जिसकी गुणवत्ता हमारे शास्त्रों में भी बताई गई है एवं विज्ञान में भी । परंतु स्वच्छ एवं शुद्ध, पीने योग्य पानी की उपलब्धता प्रकृति में भी कम है एवं हमारे आसपास भी । इसी कमी की वजह से पहले मानव नदियों के किनारे बसा करते थे और इसीलिये आज हम छोटे गावों से लेकर कई बड़े शहरो को नदियों के किनारे पाते हैं ।

वैज्ञानिक नजिरये से देखें तो - पानी में ऑक्सीजन की मात्रा जिसे डिजोल्व ऑक्सीजन कहते हैं जो कि H2O में O की मात्रा नहीं है बिल्क वातावरण में उपलब्ध ऑक्सीजन है, जो प्राकृतिक क्रियाओं के जिरये पानी में घुलती है और यही डिजोल्व ऑक्सीजन मछिलयों एंव अन्य जल प्राणियों की प्राणवायु या जीवन रेखा होती है । मुख्यतः पानी के बहाव से वातावरण की ऑक्सीजन पानी में घुलती है एवं डिजोल्व ऑक्सीजन के रूप में मापी जा सकती है । हमारे पूर्वजों ने, इस प्राकृतिक प्रक्रिया को भालीभांति समझा एवं आने वाली पीढ़ियों के लिये शास्त्रों में वर्णित किया कि नदी एवं नहर (बहते पानी) का पानी पीने के लिये श्रेष्ठ है । हालांकि आज के समय में अधिकांश नदियां प्रदूषित हो चुकी हैं जिसके लिए जिम्मेदार भी हम ही हैं।

पानी न सिर्फ हमारी प्यास बुझाता है, बल्कि हमारे शरीर के लिये उपयोगी माइक्रो-मिनरल्स की अवश्यकता को पूरा करने के साथ -साथ शरीर की अन्य आंतरिक क्रियाओं भी सहयोगी होता है ।

वर्तमान टेक्नोलॉजीकल एवं व्यापारिक युग में, आज कई कम्पनियां न केवल पानी के व्यापार से बड़ी हो गई है बल्कि ब्रांड बन गई है । विपणन एवं विज्ञापन की वजह से हमारी सोच भी प्रभावित हुई है जो इन कम्पनियों का पानी या इससे संबंधित मशीनों को बेचने का प्रमुख उद्देश्य है चाहे वह नैतिक हो या अनैतिक ।

दूसरों को देखकर एवं एडवरटाईज की वजह से आज बिना R.O. (Reverse osmosis) वॉटर प्यूरिफायर का पानी को अशुद्ध मानने लगे हैं। हमने पने घरों में R.O. पानी का TDS देखकर लगवाया है या एडवरटाईजमेंट से प्रभावित होकर या दूसरो को देखकर ?

पिछले वर्ष स्वंय के (हैदराबाद में)घर कंसट्रेक्सन के दौरान, काम पर आने वाले श्रामिकों ने कहा - साहब हम बोर (बोरवेल) या GHMC सप्लाई का पानी नहीं पीते, हमें पैक्ड वॉटर बोटल (20 L फ़िल्टर सप्लाई) मंगवा कर दीजिये और हमने दिया भी।

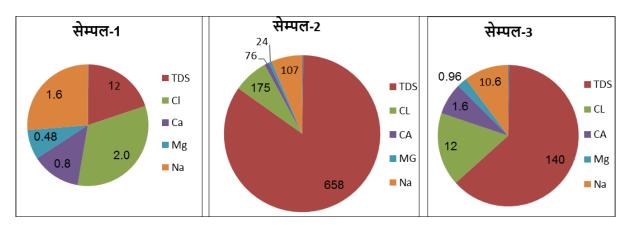
परंतु सोचा कि आज हर किसी का माइंडसैट हो गया है कि GHMC (हैदराबाद में) द्वारा सप्लाई (मंजीरा) पानी या भूमिगत बोर पानी तो पीने का पानी नही है। यह हमारी स्वयं की सूझ-बूझ है या इन कम्पनियों द्वारा फैलाया गया भ्रम।

लगभग सभी शिक्षित व्यक्ति जानते हैं कि आ.रो. (R.O.) क्या है ? सरलतम भाषा में-पानी को छानने की एक विधि जिसका प्रमुख उद्देश्य समुद्र के खारे पानी को पीने योग्य बनाने तथा कुछ परिस्थितियों में अति शुद्ध पानी को साफ कर पीने का योग्य बनाने के लिये किया जाता है। घरों में उपयोग होने वाले अधिकांश वाटर प्यूरीफायर में मुख्यतः दो भाग होते है UV+UF एवं R.O. में UV+VF+RO.

UV-Ultra Violet light पानी में उपस्थित बैक्टेरिया को नष्ट करने के लिए, UF - Ultra Fine membrane – एक अति सूक्ष्म छननी जिससे पानी में उपस्थित सभी सेडिमेंट्स (मिट्टी कण) आदि छन जाते हैं ।

R.O. (Reverse Osmosis)-semi permeable porous membrane होती है जो पानी में उपस्थित अशुद्धियों के साथ-साथ सारे लाभदायक तत्व एवं शरीर को जरूरी माइक्रो मिनरल्स जैसे कैल्शियम, मैग्निशियम, पोटेशियम इत्यादि को भी फिल्टर कर देता है। और जब हम R.O. वॉटर का TDS (Total Dissolved Solid) मापते है तो वह 20 ppm से भी कम आता है जबिक WHO अनुसार 100-500 ppm पानी पीने योग्य माना है तथा 100-200 ppm के पानी को पीने के लिये उत्तम माना है।

एक दिन बरसात के मौसम में घर में उपलब्ध TDS मीटर से वर्षा के जल का TDS मापा तो वह भी 20 ppm से कम पाया। यानी R.O. पानी को वारिस के पानी जैसा कर देता है और शायद किसी भी शास्त्र या विज्ञान की किताब में उल्लेख नहीं है कि बारिस का पानी पीने योग्य है और हम कभी भी बारिस का पानी नहीं पीते।


एक और अनुभव – अपने घर में लगे हुए टाटा- वाटर प्यूरीफायर (UV+UF) की सर्विसिंग के लिये आये हुए औथोराइज्ड टेक्नीशियन से बात करते हुए उसने बाताया कि पहले टाटा कम्पनी का R.O. भी आता था पर अब उसने बनाना बंद कर दिया। मैंने पूछा क्यों बंद कर दिया तो वह बोला - पता नहीं। पर हमें R.O. में ज्यादा सर्विसिंग का काम मिलता था एवं पार्ट्स बदलने पर कमाई भी अच्छी होती थी।

मैंने सोचा टाटा जैसी कम्पनी जो नमक, चाय आदि के दैनिक उपयोग से लेकर कार, बस, ट्रक एवं टेक्नोलॉजी के हर क्षेत्र के उत्पाद बनाने वाली भारत की प्रातिष्ठित कंपनी ने अपना कोई प्रॉडक्ट बनाना बंद कर दिया। इसके दो पहलू हो सकते है – पहला-टाटा का R.O बाजार में चला/बिका नहीं? या दूसरा- नैतिकता? मेरी निजी धारणा है कि टाटा कम्पनी नैतिकता में बाकी सभी ब्रांड या कम्पनियों में ऊपर है।

ऐसे ही एक दिन अपने विरष्ठ सहकर्मी से बात करते हुए उन्होंने बाताया कि उनके घर पर किसी ब्रांडेड R.O कम्पनी के प्रतिनिधि ने आकर उनके पीने के पानी को एक छोटी सी इलेक्ट्रिक मशीन से दिखाया कि वह बहुत अशुद्ध है और कहा कि आपको R.O. लगवाना चाहिए। इलेक्ट्रॉनिक्स फील्ड से होने के कारण मैं समझ गया, प्रतिनिधि ने क्या इलेक्ट्रिक मशीन उपयोग की होगी। एक छोटी सी दो इलेक्ट्रोड्स वाली इमरसन रोड होती है। जब इसे सप्लाई प्लग में लगाकर पानी में डालते है तो इलेक्ट्रोलाइसिस क्रिया होती है, जिसके कारण पानी में उपस्थित सभी स्वास्थ्य -वर्धक तत्व एवं मिनरल्स पोजेटिव तथा नेगेटिव आयान्स में अलग अलग हो जाते हैं और यही आयान्स पानी में मिट्टी जैसे कणों के रूप में दिखने लगते हैं। प्रतिनिधि हमें भ्रमित करते हुए बताता है कि हमारा पानी कितना गंदा या अशुद्ध है।

विरेष्ठ सहकर्मी से बात करते समय आखिर प्रश्न आया कि कैसे माने कि हम जो पानी पी रहे हैं वह शुद्ध या पीने योग्य है या नहीं। फिर हमने निर्णय लिया कि हम पानी के सैम्पल की जांच प्रयोगशाला में करवाते हैं और हमने तीन सैम्पल्स -

- 1) एक ब्रांडेड कम्पनी की 1 लीटर पैक्ड वाटर बॉटल ।
- 2) वरिष्ठ सहकर्मी के घर का पानी (मल्टीस्टोरी अपार्टमेंट में कॉमन ओवरहेड टैंक से सप्लाई वॉटर)
- 3) मेरे स्वयं के घर में आने वाले मंजीरा वाटर (GHMC सप्लाई वॉटर)
- को हैदराबाद की एक जांच प्रयोगशाला को प्लेन बोतलों में 1,2,3 नंबर के लेवल के साथ दिये एवं परिश्रम शुल्क का निजी भुगतान किया और जब परिणाम आये तो हम दोनों ही आश्चर्य चिकत थे । परिणाम के मुख्य तत्वों को नीचे पाई चार्ट में दिखाया एवं प्रयोगशाला प्रमाणपत्र नीचे संलग्न है जिसमें पैरामीटर्स एवं एक्सेटेवल लिमिट्स प्रदर्शित है।

उपरोक्त पाई चार्ट से स्पष्ट है कि सैम्पल्स-3 (GHMC supply water) गुणवत्ता के मामले में बाकी दोनों सैम्पल्स से बेहतर है।

सारांश – वर्तमान वैश्वीकरण, अत्यधिक मार्केटिंग एवं इंटरनेट के युग में, खासकर स्वास्थ्य से संबंधित उत्पाद का चुनाव या निर्णय अपने विवेक, अनुभव एवं समझदारी के साथ, तथ्यों को परखकर करना अति आवश्यक हो गया हैं। अन्यथा अब कंपनियां पानी के बाद हमें शुद्ध हवा बेचने वाली हैं।

0 3/60

सूक्ष्म -तरंग उपग्रह : ईओएस-04

डॉ. एन अपर्णा, एनआरएससी, हैदराबाद

भारत एक उष्ण कटिबंधीय जलवायु देश है। यहां पर 4 से 6 महीने या तो बरसात होती है या फिर बादल छाए रहते हैं। इसके तहत अगर हमें प्रकाशीय उपग्रह से भारत के आंकड़ों का अर्जन करना हो तो ज्यादातर वह क्लाउड में छिप जाते हैं। इसलिए ऐसी परिस्थितियों में सूक्ष्म-तरंग संवेदकों के उपग्रह बहुत काम आता है। यह बारिश के मौसम में भी आंकड़ें प्रदान करने की क्षमता रखता है। हैज,क्लाउड परिस्थितियों में भी यह आंकड़े प्रदान करता है। इसके आंकड़े खेती की निगरानी, उपज की क्षमता, बाढ़ आदि के समय बहुत इस्तेमाल किया जाता है।

इसी के तहत इसरो ने ईओएस-04 को प्रमोचित किया जो कि रिसैट-1 श्रृंखला का उपग्रह है।

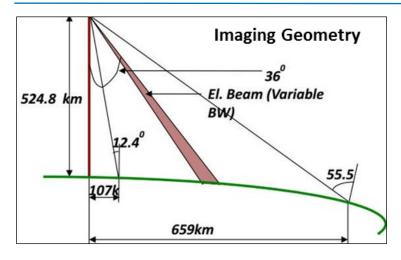
ईओएस-04 ए का प्रक्षेपण इसरो के ध्रुवीय उपग्रह प्रमोचन यान पीएसएलवी-सी52 द्वारा सतीश धवन अंतरिक्ष केंद्र (एसडीएससी) श्रीहरिकोटा से किया गया। इसके साथ ही दो और पैसेंजर्स उपग्रह भी थे। इसे 14 फरवरी को 05:59 बजे प्रमोचित किया गया। ईओएस-04 में एक सीबैंड संश्लेषी ऑपरेटीव रडार है जिसके द्वारा आंकड़े अर्जित किए जाएंगे। इसका निर्धारित जीवन 5 वर्ष का है। इसकी योजना एनआरएससी द्वारा किया जाता है और कमांडिंग इस्ट्रैक द्वारा किया है।

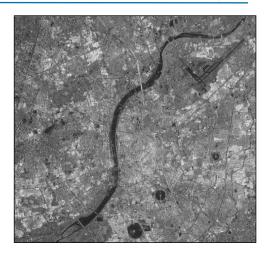
इनऑर्बिट उपग्रह प्रबंधन और पृथ्वी पर डेटा प्रबंधन को निम्नानुसार परिभाषित किया गया है:

- 1.अंतरिक्ष खंड, जिसमें सार पेलोड और मुख्य फ्रेम सिस्टम के साथ तीन अक्ष स्थिर उपग्रह शामिल हैं।
- 2.जमीन पर सहायक बुनियादी ढांचे के साथ आंकड़ा अभिग्रहण, स्तर संसाधन आंकड़े उत्पाद जनन और प्रसार सुविधाएं।
- 3.उपग्रह ताप विश्लेषण, कक्ष अनुरक्षण और नीतभार प्रचालनों की समय-सारणी पर नज़र रखने, कमांडिंग के लिए अंतरिक्ष यान नियंत्रण केंद्र है।
- 4.उपयोगकर्ता के अनुकूल मूल्य संवर्धित डेटा उत्पादों और डेटा अभिलेखीय का विकास।

ईओएस-04 का मुख्य अनुप्रयोग:

- •कृषि
- •वानिकी और वृक्षारोपण
- •बाढ मानचित्रण
- •मृदा आद्रता एवं जलविज्ञान
- •संसूचना परिवर्तन
- •समुद्र विज्ञान


ईओएस-04 के मुख्य विशेषाएं निम्न लिखित तालिका में दर्शाए गए हैं।


तालिका-1

	ईओएस की मुख्य विशेषताएं - 04									
क्र.सं.	मानदंड	स्थूल विभेदन मोड (12 बीम)	माध्यम विभेदन मोड (8 बीम)	सूक्ष्म विभेदन मोड (एफआरएस-1)	उच्च विभेदन मोड(स्पॉट मोड)					
1	तुंगता कि.मी. में		524.87							
2	झुकाव	97.5 °								
3	दिनों में दोहराव	17	17	139						
4	कक्षा की अवधि मिनटों में		95							
5	किमी . में स्वाथ	223	160	25	10					
6	एजेड विभेदन मीटर में	50	33	3	1					
7	स्थानीय समय	6:00	AM/PM (±10 min)							

ईओएस-04 के इमेजिंग जियोमेट्री चित्र सं.-1 में दिया गया है।

नमूना चित्र

इसके नीतभार मोड विनिर्देशन और उत्पाद तालिका-2 एवं 3 में दिए गए हैं।

तालिका-2

इमेजिंग मोड	स्वाथ	ध्रुवीकरण	विभेदन (Azi. x SI Rng.)
FRS-1	25 km	Single, Dual, Circular	3m x 2m
FRS-2	20 km	Full Pol	3m x 4m
MRS 6-Beam	115 km	Single, Dual, Circular	25m x 8m
MRS 8-Beam	160 km	Single, Dual, Circular	33m x 8m
CRS	223 km	Single, Dual, Circular	50m x 8m
HRS	15 km	Single, Dual, Circular	1m x 2m

तालिका-3

	उत्पादों का स्तर									
	मानक उत्पाद	मूल्य वर्धित उत्पाद								
Level-0	Raw Signal Product (Generic Binary)	Level-1C	Geo-tagged Polarimetric products							
Level-1	Slant Range Geo-Tagged Product (CEOS/GeoTiff) Ground Range Products (CEOS/GeoTiff)	Level-3A Geo-referenced Polarimetric products								
Level-2 GEOREF	Enhanced Terrain corrected Geo Referenced Product (GeoTiff) Projection: UTM/Polyconic Datum: WGS84, Resampling: CC	Mosaic Products: India Mosaic (for sy Large Area Mosaic	stematic coverage) ,Full Strip Mosaic							

आंकड़ों को ग्रहण करने की विधि:

सूक्ष्मतरंग उपग्रह से हम दिन और रात दो समय में आंकड़े अर्जित कर सकते हैं। आंकड़े ग्रहण करने की प्रणाली इस प्रकार है-

अवरोही क्रम (Descending Panes) : प्रत्येक दिन ८ बीम के साथ एचआरएस मोड़ में सुव्यवस्थित कवरेज।

आरोही क्रम (Ascending panes) : आंकड़े अभिलेखीय तैयार करने के लिए सभी राष्ट्रीय तथा अंतरराष्ट्रीय प्रयोक्ता सभी मोड़ और एमआरएस/सीआरएस मोड में।

उपभोक्ता को आंकड़े भूनिधि से उपलब्ध करवाया जाएगा। अभी उपग्रह का प्रारंभिक प्रचालनात्मक चरण चल रहा है जिसमें उपग्रह को अंशांकन किया जाएगा और इसके बाद आंकड़े उपभोक्ताओं को उपलब्ध किया जाएगा।

सौर ऊर्जा के क्षेत्र में नव-विकास

शंभु सिंह टाक, आरआरएससी-जोधपुर

सूर्य एक आग के गोले के समान है। यह अपनी किरणों के द्वारा धरती पर अपार गर्मी फेंकता रहता है। विभिन्न उपकरणों के द्वारा जब इस ऊष्मा (heat) से बिजली बनाई जाती है, इस सूरज के किरणों से ऊर्जा या बिजली को हम "सौर ऊर्जा" कहते हैं।

आपको यह ज्ञात होगा कि पौधे सौर ऊर्जा का उपयोग कर अपना भोजन तैयार करते हैं। पत्तियां सूर्य से प्रकाश प्राप्त करके भोजन तैयार करने के लिए प्रकाश संश्लेषण की प्रक्रिया में इसका उपयोग करती है। इस तरह पौधों द्वारा फल, फूल और सब्जियां बनाने में सूर्य की अहम भूमिका है।

सूरज से बिजली कैसे बनती है?

बिजली उत्पादन विधि जो सूर्य की ऊर्जा को बिजली में परिवर्तित करती है। इसमें सौर पैनलों का उपयोग होता है जो अक्सर इमारतों की छत या खुले स्थान पर व्यवस्थित होते हैं या सौर खेतों में भी केंद्रित होते हैं। सौलर पैनल कई सोलर सेल्स से मिलकर बना होता है। जब इन सोलर सेल्स पर सूर्य की रोशनी पड़ती है, तो ये इस प्रकाश को बिजली में बदल देते हैं।

सौर ऊर्जा को इकट्ठा करने के लिए फोटोवोल्टिक प्रणाली अपने सिस्टम में कई घटकों का उपयोग करती है, इस प्रणाली की सबसे उल्लेखनीय विशेषता सौर पैनल है। पैनल सौर ऊर्जा एकत्र करता है और इसे डी.सी. करंट में बदल देता है और फिर सौर ऊर्जा कनवर्टर इसे एक प्रयोग करने योग्य ए.सी. करंट में बदल देता है।

भारत का सबसे बड़ा व प्रमुख सोलर पॉवर प्लांट जोधपुर जिले के फलोदी तहसील के भड़ला गांव में स्थित है। जो कि 5700 हैक्टयर में फैला है। इसकी कुल क्षमता 2245 मेगावट है जो कि विश्व का सबसे बड़ा सोलर प्लांट है।

भड़ला (जोधपुर) सोलर प्लांट के चरणबद्ध विकास से संबंधित उपग्रह प्रतिबिंब

भड़ला गांव (जोधपुर) में स्थित विश्व का सबसे बड़ा सोलर प्लांट

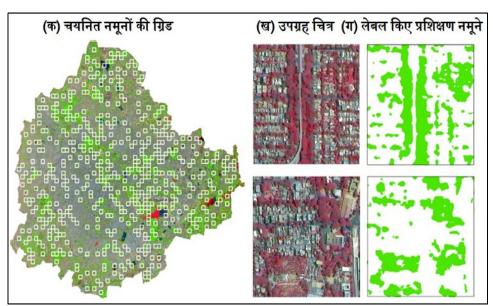
यहां सालना 33,165 लाख यूनिट बिजली का उत्पादन होता है। दूसरा बड़ा सोलर पार्क- शक्ति स्थल सौर ऊर्जा परियोजना है जो कि कर्नाटक राज्य के पावगाड़ा में स्थापित है, इसकी क्षमता 2050 मेगावट है।

कर्नाटक राज्य के पावगाड़ा में स्थापित सोलर प्लांट

तीसरा – अल्ट्रा मेगा सोलर पार्क- 1,000 मेगावट का यह आंध्र प्रदेश के कर्नूल में बनाया गया है। वर्ष 2019 में स्थापित यह सोलर प्लांट देश भर में विद्युत निर्माण एवं ऊर्जा संरक्षण की दिशा में काम कर रहा है। इस प्लांट की स्थापना आंध्र प्रदेश सोलर पॉवर कॉरपोरेशन द्वारा सोलर एनर्जी कॉरपोरेशन ऑफ इंडिया की भागीदारी में की गयी है।

आंध्र प्रदेश के कर्नूल में स्थापित सोलर प्लांट

उच्च-विभेदन उपग्रह चित्रों एवं कृत्रिम बुद्धिमत्ता द्वारा वन-क्षेत्र के बाहर वृक्ष-क्षेत्र का आकलन

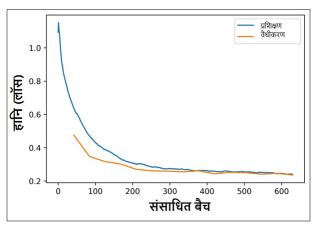

शिवम् त्रिवेदी, हेब्बार आर. एवं विनोद पी.वी., आरआरएससी,बेंगलुरू 🥒

सारांश: कार्टोसैट-2 उपग्रह से प्राप्त 1.0 मीटर के उच्च-विभेदन उपग्रह चित्रों का प्रयोग करके बेंगलुरु शहर के वन-क्षेत्र के बाहर स्थित वृक्ष-क्षेत्र के आकलन के लिए कृत्रिम बुद्धिमत्ता पर आधारित एक प्रशिक्षित डीप लर्निंग यू-नेट मॉडल का विकास किया गया। इस कार्यपद्धित को अनुकूलित करके अन्य भारतीय राज्यों के कुछ ज़िलों में विभिन्न कृषि-पारिस्थितिकीय परिदृश्यों में सफलतापूर्वक लागू किया गया।

परिचय: प्राकृतिक या अर्ध-प्राकृतिक वनों में पाए जाने वाले वृक्षों के साथ ही, कृषि-भूमि एवं अन्य सभी क्षेत्रों में पाए जाने वाले वृक्षों का अत्याधिक महत्त्व है। वन-क्षेत्र के बाहर के वृक्ष-क्षेत्रों को ट्रीज़ आउटसाइड फॉरेस्ट्स (टी.ओ.एफ.) भी कहा जाता है। ये ऐसे क्षेत्र हैं जिन्हें वन या वन-भूमि के अंतर्गत परिभाषित नहीं किया गया है। टी.ओ.एफ. के अंतर्गत मुख्यतः, खेतों में खड़े वृक्ष (एकल या झुण्ड में पाए जाने वाले), खेतों की मेंढ़ों पर पाए जाने वाले वृक्ष, सड़कों एवं नहरों के दोनों किनारों पर पायी जाने वाले वृक्षों की कतारें, फलों के बागान, शहरी क्षेत्र में पाए जाने वाले पार्कों एवं अन्य क्षेत्रों में पाए जाने वाले वृक्ष शामिल हैं। विशाल ग्रामीण आबादी की प्रमुख आजीविका होने के अलावा, ये वैश्विक जलवायु संतुलन के लिए कार्बन अधिग्रहण एवं अन्य पारिस्थितिकी सेवाओं से संबंधित भूमिका भी निभाते हैं। इस संसाधनों का सटीक आकलन, इनके समुचित नियोजन की दिशा में प्रथम निर्णायक कदम है, जिस पर भारतीय परिवेश में व्यापक रूप से अभी अधिक जानकारी उपलब्ध नहीं है।

प्रस्तुत लेख में इसी दिशा में किए गए व्यवहार्यता अध्ययन का वर्णन किया गया है। इस अध्ययन में कार्टोसैट-2 उपग्रह से प्राप्त 1.0 मीटर के उच्च-विभेदन उपग्रह चित्रों का प्रयोग करके बेंगलुरु शहर के बृहत बेंगलुरु महानगर पालिके (बी.बी.एम.पी.) क्षेत्र के टी.ओ.एफ. का आकलन, अत्याधुनिक कार्यपद्धित द्वारा किया गया। परंपरागत रूप से प्रयोग किये जाने वाले प्रति पिक्सेल आधारित वर्गीकरण का उपयोग निम्न रिज़ॉल्यूशन उपग्रह छिवयों को वर्गीकृत करने के लिए किया जाता रहा है। मध्यम रिज़ॉल्यूशन छिवयों से वर्गीकरण के लिए ऑब्जेक्ट बेस्ड इमेज एनालिसिस (ओ.बी.आई.ए.) आधारित तकनीकों का उपयोग भी प्रायः किया जाने लगा है। टी.ओ.एफ. को सटीकता से वर्गीकृत करने के लिए अति-उच्च रिज़ॉल्यूशन वाली उपग्रह छिवयों (1 मीटर स्थानिक रिज़ॉल्यूशन या उससे बेहतर) के उपयोग की आवश्यकता होती है। इस उद्देश्य के लिए उपर्युक्त तकनीकें बहुत प्रभावी नहीं हो सकती हैं। हाल ही में, कृत्रिम बुद्धिमत्ता, विशेष रूप से डीप लर्निंग (डी.एल.) आधारित तकनीकों का उपयोग अति-उच्च रिज़ॉल्यूशन वाली छिवयों से वर्गीकरण के लिए बहुत प्रभावी ढंग से किया गया है।

चित्र 1: ओ.बी.आई.ए. का प्रयोग करके प्रारंभिक टी.ओ.एफ. मानचित्र का जनन (क) चयनित 445 नमूनों की ग्रिड- 512x512 पिक्सेल प्रति ग्रिड (ग्रिड सफ़ेद रंग में) (ख) लेबल बनाने में प्रयुक्त उपग्रह चित्र की ग्रिड एवं (ग) समरूपी लेबल किए गए प्रशिक्षण नमूने (टी.ओ.एफ. हरे रंग में)

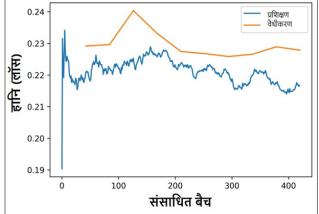


कृतिम बुद्धिमत्ता / डीप लर्निंगः कृतिम बुद्धिमता (आर्टिफिशियल इंटेलिजेंस/ ए.आई.) का अर्थ है- एक मशीन में सोचने-समझने और निर्णय लेने की क्षमता का विकास करना। चूँिक मशीनों में यह क्षमता पहले से नहीं होती बल्कि विकसित की जाती है, अतः इसे कृतिम बुद्धिमत्ता कहते हैं। मशीन लर्निंग एवं डीप लर्निंग तकनीकें कृतिम बुद्धिमत्ता पर ही आधारित हैं। ये ऐसे सॉफ्टवेयर अल्गोरिझ हैं, जिसमें कम्प्यूटर को समस्या के निदान के कई उदाहरण देकर प्रशिक्षित किया जाता है ताकि वे कम समय में परिणामों का बेहतर अनुमान लगा सकें।

कार्य पद्धति: अध्ययन क्षेत्र के उपग्रह आंकड़ों को मानक संसाधन पद्धति द्वारा संसाधित करने के बाद ओ.बी.आई.ए. से

चित्र 2: हानि एवं अधिगम दर

प्रारंभिक वर्गीकरण कर प्रथम स्तर का टी.ओ.एफ मानचित्र तैयार कर लिया गया। इन वर्गीकृत आंकड़ों पर 512x512 पिक्सेल की ग्रिड अधिचित्रित करके, सम्पूर्ण अध्ययन क्षेत्र की कुल ग्रिडों की लगभग 15% ग्रिडों (445 ग्रिड) को नमूनों के तौर पर प्रयोग करने के लिए, इनके प्रारंभिक टी.ओ.एफ. मानचित्र को दृश्य-अर्थनिर्वचन द्वारा आवश्यकतानुसार परिष्कृत कर लिया गया (चित्र 1)।


चित्र 3: प्रथम चरण की आखिरी परत के प्रशिक्षण के दौरान हानि एवं संसाधित बैचों की संख्या

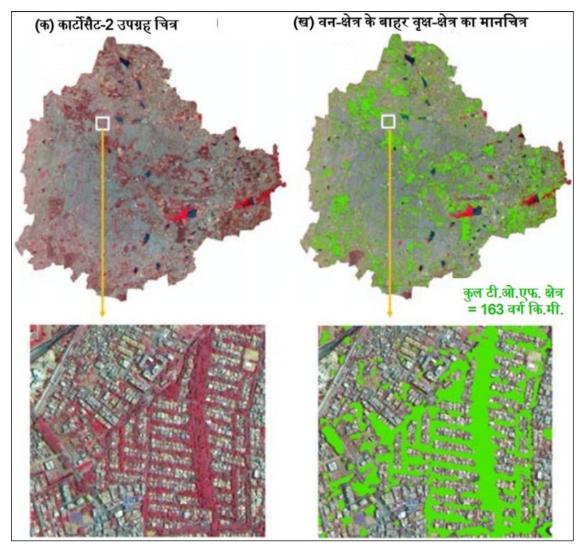
इन लेबल किये गए प्रशिक्षण नमूनों का उपयोग ResNet34 आर्किटेक्चर के साथ यू-नेट आधारित सिमेंटिक विभाजन विकसित करने के लिए किया गया। डीप लर्निंग प्रशिक्षित मॉडल का विकास मुख्यतः दो चरणों में किया गया। प्रथम चरण में 256x256 पिक्सेल ग्रिड का प्रयोग किया गया, जबिक द्वितीय चरण में मौलिक 512x512 पिक्सेल ग्रिड का ही प्रयोग किया गया। एक अच्छे डीप लर्निंग मॉडल के विकास के लिए महत्वपूर्ण प्रक्रियाओं में से एक को मॉडल अनुकूलन या ऑप्टिमाइजेशन कहा जाता है। इस प्रक्रिया में, एक हानि (लॉस) फ़ंक्शन होता है जो प्रशिक्षण के नमूनों के अनुमानित आउटपुट और जमीनी सच्चाई के बीच त्रुटि का पता लगाएगा, जिसकी गणना कई एपॉक्स में की जातो है (इपॉक का तात्पर्य प्रशिक्षण पुनरावृत्तियों की संख्या से है)।

पुनरावृत्तियों को तब तक जारी रखा जाता है जब तक कि प्रशिक्षण हानि और वैधीकरण हानि कम नहीं हो जाती और सटीकता (मॉडल प्रदर्शन) को स्वीकार्य स्तर तक बढ़ा दिया जाता है। अधिगम दर (सीखने की दर/ लर्निंग रेट) अनुकूलन प्रक्रिया में उपयोग किया जाने वाला एक महत्वपूर्ण हाइपर पैरामीटर है, जो मूल रूप से हानि फ़ंक्शन को नियंत्रित करता है। बेहतर मॉडल सम्मिलन

(कन्वर्जेन्स) के लिए अधिगम दर का सही मान चुनना महत्वपूर्ण है। बेहतर सटीकता प्राप्त करने के लिए मॉडल को अनुकूलित करने हेतु महत्त्वपूर्ण हाइपर-पैरामीटरों को पुनरावृत्तीय रूप से ट्यून किया गया था।

डीप लर्निंग मॉडल के विकास के दौरान चित्र 2 में हानि (लॉस) एवं अधिगम दर की स्थिति को दर्शाया गया है, जिसका उपयोग इष्टतम अधिगम दर खोजने के लिए किया गया। प्रथम चरण की आखिरी परत के प्रशिक्षण के दौरान हानि एवं संसाधित बैचों की संख्या एवं द्वितीय चरण में विभेदक प्रशिक्षण के दौरान 25 इपॉक के साथ हानि एवं संसाधित बैचों की संख्या को चित्र 3 और चित्र 4 में क्रमशः दिखाया गया है। बनाये गए सभी 445 नमूनों में से लगभग 80 प्रतिशत नमूने (356) डीप लर्निंगमॉडल के प्रशिक्षण

चित्र 4: द्वितीय चरण में विभेदक प्रशिक्षण के दौरान 25 इपॉक के साथ हानि एवं संसाधित बैचों की संख्या



के लिए एवं 20 प्रतिशत नमूने (89) मॉडल के वैधीकरण के लिए प्रयुक्त किये गए थे। इस प्रकार मात्र 15% क्षेत्र के लिए दिए गए इनपुट से विकसित किया गया प्रशिक्षित डीप लर्निंग मॉडल, सम्पूर्ण अध्ययन क्षेत्र पर प्रयुक्त कर दिया गया।

तालिका १: टी.ओ.एफ. मानचित्रण हेतु ओ.बी.आई.ए. व डीप लर्निंग विधियों का तुलनात्मक सटीकतामूल्यांकन

मॉडल	सही ढंग से वर्गीकृत टी.ओ.एफ. (%)	ओमिशन त्रुटि (%)	कमीशन त्रुटि (%)
ओ.बी.आई.ए.	78.31	21.69	3.5
डीप लर्निंग	88.09	11.91	1.4

चित्र 5: डीप लर्निंग मॉडल का प्रयोग कर वन-क्षेत्र के बाहर के वृक्ष-क्षेत्र का मानचित्र (हरे रंग में दर्शाया गया)

परिणाम एवं सटीकता: इस अध्ययन के द्वारा बी.बी.एम.पी. क्षेत्र का अनुमानित कुल वन-क्षेत्र के बाहर का वृक्ष-क्षेत्र 163 वर्ग किलोमीटर पाया गया (चित्र 5) । 88.3 % वर्गीकरण सटीकता के साथ इस डीप लर्निंग मॉडल का परिणाम काफी उत्साहजनक था (तालिका 1) । टी.ओ.एफ. क्षेत्र की सीमा-रेखा भी काफी स्पष्ट थी, जिसके कारण वर्गीकरण के पश्चात् उसे पुनः परिष्कृत करने की ज़रुरत न्यूनतम या न के बराबर थी ।

साथ ही इस व्यवहार्यता अध्ययन की सफलता के आधार पर क्षेत्रीय सुदूर संवेदन केंद्र - दिक्षण को सितंबर 2021 में राष्ट्रीय स्तर पर कृषि-वानिकी (एग्रोफोरेस्ट्री) के मानचित्रण हेतु पायलट परियोजना का कार्य निष्पादित करने की ज़िम्मेदारी प्राप्त हुई। यह परियोजना संयुक्त राष्ट्र के 'खाद्य और कृषि संगठन' (फ़ूड एंड एग्रीकल्चर आर्गेनाईजेशन) द्वारा प्रायोजित की गई है। इसके अंतर्गत 'राष्ट्रीय वर्षा-सिंचित क्षेत्र प्राधिकरण' द्वारा चयनित भारत के 5 राज्यों (कर्नाटक, राजस्थान, उत्तर प्रदेश, हरियाणा एवं असम) में चुने हुए 6 जिलों का पहली बार एकीकृत कृषि-वानिकी मानचित्र तैयार करने का लक्ष्य रखा गया, जिसे संयुक्त रूप से एन.आर.एस.सी. के सभी क्षेत्रीय केंद्रों के सक्रिय योगदान द्वारा कृत्रिम बुद्धिमत्ता की इसी तकनीक से कुछ ही महीनों में पूरा कर लिया गया।

निष्कर्ष: इस व्यवहार्यता अध्ययन में कार्टोसैट-2 उपग्रह से प्राप्त 1.0 मीटर के उच्च-विभेदन उपग्रह चित्रों एवं कृत्रिम बुद्धिमत्ता पर अधारित डीप लर्निंग मॉडल का विकास किया गया। 88.3 % वर्गीकरण सटीकता के साथ बेंगलुरु शहर के बी.बी.एम.पी. क्षेत्र का अनुमानित कुल वन-क्षेत्र के बाहर का वृक्ष-क्षेत्र 163 वर्ग किलोमीटर पाया गया। मूलतः शहरी क्षेत्र के लिए विकसित इस कार्यपद्धित का अनुकूलन करके भारत के अन्य 5 राज्यों के ग्रामीण-शहरी क्षेत्रों में राष्ट्रीय पायलट परियोजना के अंतर्गत पहली बार एकीकृत कृषि-वानिकी मानचित्र तैयार करने के लिए इसे सफलतापूर्वक लागू किया गया।

आभार: लेखक निदेशक, राष्ट्रीय सुदूर संवेदन केन्द्र (हैदराबाद) एवं मुख्य-महाप्रबंधक, एन.आर.एस.सी. क्षेत्रीय केंद्र (हैदराबाद) के प्रति आभार व्यक्त करते हैं, जिन्होंने इस अध्ययन में उन्हें मार्गदर्शन एवं प्रोत्साहन दिया।

सन्दर्भ:

ब्रांडेट जे. एवं स्टोल एफ, 2020. ए ग्लोबल मेथड टु आइडेंटिफाई ट्रीज़ आउटसाइड ऑफ़ क्लोज़्ड-कैनोपी फॉरेस्ट्स विद मीडियम -रेज़लुशन सैटेलाइट इमेजरी, इंटरनेशनल जर्नल ऑफ़ रिमोट सेंसिंग, 42 (5): 1713-1737 doi.org/10.1080/01431161.2020.1841324

क्षेत्रीय सुदूर संवेदन केंद्र - दक्षिण, 2020. असेसमेंट ऑफ़ ट्रीज़ आउटसाइड फॉरेस्ट्स (टी.ओ.एफ.) यूसिंग हाई रेज़लुशन सैटेलाइट डाटा, ऑब्जेक्ट बेस्ड इमेज एनालिसिस एंड डीप लर्निंग. NRSC-RC-REGBANG-RRSC-BANG-NOV2020-TR0001719-V1.0, पृष्ठ 1-12.

हेब्बार आर., रविशंकर एच.एम., शिवम् त्रिवेदी, रामा सुब्रमण्यम एस., उदय राज एवं डढवाल वी.के., 2014. ऑब्जेक्ट-ओरिएंटेड क्लासिफिकेशन ऑफ़ हाई रेज़लुशन सैटेलाइट डाटा फॉर इन्वेंटरी ऑफ़ हॉर्टिकल्चरल क्रॉप्स, इंटरनेशनल आर्काइव्ज ऑफ़ द फोटोग्रामेट्री, रिमोट सेंसिंग एंड स्पेशियल इन्फॉर्मेशन साइंसेज, XL-8.

भूविज्ञान से जुड़ी एलोरा की गुफाएं, औरंगाबाद, महाराष्ट्र

निर्मला जैन तथा प्रियोम राय, एनआरएससी, हैदराबाद

एलोरा की गुफाएं महाराष्ट्र राज्य के औरंगाबाद जिले में स्थित है। यह गुफाएं यूनेस्को की विश्व विरासत स्थलों में से एक है। एलोरा में एक सौ से अधिक गुफाएं हैं। इनमें बौद्ध, हिन्दू और जैन धर्म से सम्बंधित विशेषताएं देखने को मिलती है। यह गुफाएं बेसाल्ट की चट्टानों को काट कर बनाई गई है। यह दुनिया भर में बेसाल्ट के पहाड़ों की खुदाई और शिल्पकारी के लिए जानी जाती है। नीचे दिए गए चित्र में इसका उदाहरण देखने को मिलता है।

चित्र: एलोरा की गुफाओं का एक हिस्सा जो बेसाल्ट को काटकर बनाया गया है। (स्रोत:www.thehistory.com)

भूविज्ञान में बेसाल्ट रॉक बहुत महत्वपूर्ण है। इसका निर्माण बेसाल्टिक तरल लावा के पृथ्वी के ऊपरी स्थल पर आकर ठण्डे होने से होता है। जब तरल लावा धीरे- धीरे पृथ्वी के ऊपरी स्थल पर आकर ठण्डे होते हैं उसे कंपाउण्ड फ्लो कहते हैं और इससे बनने वाले चट्टानों को कंपाउण्ड फ्लो बेसाल्ट कहा जाता हैं। भारत और दुनियाभर में डेक्कन ट्रैप्स ज्वालामुखीय विशेषताओं (fissure eruption) के लिए जाना जाता है। यह क्रीटाशियस युग (लगभग पैंसठ लाख वर्ष पहले) के दौरान बने है। भारत के पश्चिमी तट पर स्थित पर्वत श्रृंखला को सह्याद्रि या पश्चिमी घाट कहते हैं। डेक्कन ट्रैप इसी पर्वत श्रृंखला में पाए जाते हैं। बेसाल्ट रॉक इसी का महत्वपूर्ण हिस्सा है। महाराष्ट्र राज्य के साथ ही डेक्कन ट्रैप कर्नाटक, मध्य प्रदेश और गुजरात में भी फैला है। ऐसा भी माना जाता की पृथ्वी पर डायनासोर इसी समय विलुप्त हुए थे।

एलोरा की गुफाएं इसी कंपाउण्ड फ्लो बेसाल्ट में बनाई गई हैं। पश्चिमी घाट के पर्वत ऊपर से चपटे मतलब फ्लैट होते हैं और इनको काटकर यह गुफाएं बनी हैं। एलोरा की गुफाओं के आलावा और भी गुफाएं कंपाउण्ड फ्लो बेसाल्ट से बनाई गई हैं, जैसे की एलिफेंटा की गुफा, भाजा और भेडसे गुफाएं जो महाराष्ट्र राज्य के मुंबई और लोनावला के पास स्थित है।

डीसी जेनरेटर

बिस्वा प्रकाश नायक, एनआरएससी, हैदराबाद

डीसी मशीन को दो प्रकार से प्रयोग कर सकते हैं। यदि हम डीसी मशीन को डीसी जेनरेटर के रूप में इस्तेमाल करते हैं तो यह मैकेनिकल ऊर्जा को विद्युत ऊर्जा मे परिवर्तित करता है। यदि हम डीसी मशीन को मोटर के रूप में इस्तेमाल करते हैं, तो इसमें मशीन विद्युत ऊर्जा को मैकेनिकल ऊर्जा मे परिवर्तित करता है।

डीसी जेनरेटर क्या है: जब हम डीसी मशीन को प्राइम मूवर के द्वारा घूमाते हैं तो वह मशीन मैकेनिकल एनर्जी को इलेक्ट्रिकल एनर्जी में परिवर्तित करता है। इसी प्रकार की व्यवस्था को डीसी जेनरेटर कहते हैं।

डीसी जेनरेटर का कार्य सिद्धांत: डीसी जनरेटर में जैसा कि हम जानते हैं कि इसमें एक मैग्नेटिक फील्ड उपस्थित रहता है। विद्युत चुंबकीय क्षेत्र के बीच में हमारा आर्मेचर रहता है। जिसमें आर्मेचर चालक लगे होते हैं। अब चूंकि जनरेटर को प्राइम मूवर के द्वारा आर्मेचर को घुमाया जाता है। अतः इसके साथ-साथ आर्मेचर चालक भी घूमते हैं। अब हम जानते हैं कि यह आर्मेचर विद्युत चुंबकीय क्षेत्र में स्थित है। अतः आर्मेचर चालक जिस स्पीड से घूमता है उसी स्पीड से विद्युत चुंबकीय फलक्स को काटता है। जब कोई धारावाही चालक या कायल किसी विद्युत चुंबकीय क्षेत्र में घूमता है तो उस चालक या कुंडली के दोनों सिरों पर एक ईएमएफ उत्पन्न होता है। अगर हम इस कायल पर कोई लोड लगा दे तो कायल में धारा बहने लगती है। जैसा कि हम जानते हैं कि इससे अल्टरनेटिंग करंट उत्पन्न होता है। लेकिन हम डीसी जनरेटर की बात कर रहे हैं तो जनरेटर में इस अल्टरनेटिंग करंट को डीसी करंट में बदलने के लिए एक प्रकार की व्यवस्था लगाई जाती है जिसे हम कम्यूटेटर कहते हैं। यह कम्यूटेटर बाई डायरेक्शनल सिग्नल को यूनिडायरेक्शनल सिग्नल में परिवर्तित करता है।

डीसी जेनरेटर के प्रकार: डीसी मशीन को ही तो हम डीसी जनरेटर के रूप में इस्तेमाल करते हैं। डीसी जनरेटर भी मुख्यतः दो प्रकार का होता है।

- 1. सेपरेटली एक्साइटेड जेनरेटर
- 2. सेल्फ एक्साइटेड जेनरेटर

सेपरेटली एक्साइटेड जेनरेटर: इस जेनरेटर को एक्साइट करने के लिए एक अलग से उत्तेजना सप्लाई की जरूरत पड़ती है। इस जेनरेटर में एक अलग से उत्तेजना घुमावदार लगी हुई है जिसे अलग से एक सप्लाई दिया गया है। इस प्रकार के जेनरेटर में अविशष्ट मैग्नेटिज्म ना होने के कारण इसे अलग से उत्तेजना सप्लाई के द्वारा एक्साइट किया जाता है।

उपयोग: यह जेनरेटर बहुत कम जगह पर प्रयोग किया जाता है। क्योंकि इसको चालू करने के लिए एक अलग से एक्स आईटी असम सप्लाई की जरूरत पड़ती है। अतः इसका उपयोग स्पेशल एप्लीकेशन के लिए जैसे जहाज में डीसी सप्लाई की आपूर्ति के लिए किया जाता है। इसका सबसे महत्वपूर्ण उपयोग वार्ड लियोनार्ड मेथड में किया जाता है। यह डीसी मोटर की गति नियंत्रण की विधि है। जिसमें मुख्य जेनरेटर के रूप में सेपरेटली एक्साइटेड जेनरेटर का इस्तेमाल किया जाता है।

सेल्फ एक्साइटेड डीसी जेनरेटर: इस प्रकार के जनरेटर में इसके फील्ड मैग्नेट को किसी अलग सप्लाई या सोर्स से एक्साइट नहीं करना पड़ता है। इसके फील्ड मैग्नेट में उपस्थित अविशष्ट चुंबकत्व के कारण कम मात्रा में आर्मेचर में ईएमएफ पैदा हो जाता है। जिससे मैग्नेटिक पोल एक्साइट हो जाता है।

सेल्फ एक्साइटेड डीसी जनरेटर मुख्यतः तीन प्रकार के होते हैं।

- 1. डीसी सीरीज जेनरेटर
- 2. डीसी शंट जेनरेटर
- 3. डीसी कंपाउंड जेरेटर

डीसी सीरीज जेनरेटर: इस जेनरेटर में मुख्य फील्ड वाइंडिंग आर्मेचर की सीरीज में जुड़ा होता है। इसलिए इसे डीसी सीरीज जेनरेटर कहते हैं। इसमें फील्ड वाइंडिंग सीरीज में जुड़े होने के कारण आर्मेचर में जितनी धारा बहती है, उतनी ही धारा फील्ड

वाइंडिंग में भी बहती है। इसकी सीरीज फील्ड वाइंडिंग मोटे तार के कम लपेटा (मोड़) देकर बनाया जाता है। सीरीज जनरेटर का प्रयोग बहुत कम किया जाता है।

उपयोग: इसका उपयोग डीसी सप्लाई वाले डिस्ट्रीब्यूशन लाइन में एक बूस्टर के रूप में इस्तेमाल किया जाता है।

डीसी शंट जेनरेटर: इस जेनरेटर में फील्ड वाइंडिंग को आर्मेचर के समांतर में जोड़ा जाता है। इसके फील्ड वाइंडिंग पतले तार के अधिक लपेटा देकर बनाया जाता है। इसमें आर्मेचर करंट बहुत कम मात्रा में बहता है।

उपयोग: इसका उपयोग छोटे स्तर वाले डीसी पावर सप्लाई के लिए किया जाता है।

डीसी कंपाउंड जनरेटर: इस प्रकार के जनरेटर में दो प्रकार के बाइंडिंग सीरीज फील्ड वाइंडिंग तथा शंट फील्ड वाइंडिंग लगे होते हैं। अतः इसमें वाइंडिंग का कनेक्शन दो प्रकार का हो सकता है।

1. शॉर्ट शंट कंपाउंड कनेक्शन:

इसमें शंट फील्ड वाइंडिंग को आर्मेचर के सापेक्ष जोड़ा जाता है। अतः यह शॉर्ट शंट कंपाउंड कनेक्शन कहलाता है।

2. लॉना शंट कंपाउंड कनेक्शन:

इसमें शंट फील्ड वाइंडिंग को आर्मेचर तथा सीरीज फील्ड वाइंडिंग दोनों के सापेक्ष जोड़ा जाता है। डीसी कंपाउंड जेनरेटर दो प्रकार के होते हैं।

1. डिफरेंशियल कंपाउंड जेनरेटर:

इस प्रकार के जनरेटर में दोनों प्रकार के फील्ड वाइंडिंग के फ्लक्स का अंतर (фsh – фse) ही परिणाम इफ्लक्स होता है। अतः इसे डिफरेंस इन कंपाउंड जनरेटर कहते हैं।

उपयोग: इस जनरेटर में लोड बढ़ने पर फ्लक्स घटता है। जिसके कारण यह emf घटता है तथा करंट कमान बढ़ जाता है। अतः हम इसे इलेक्ट्रिकल आर्क वेल्डिंग में प्रयोग करते हैं क्योंकि इसमें हमें लो वोल्टेज(कम वोल्टेज) और हाई करंट(तेज करंट) की आवश्यकता होती है।

2. संचयी यौगिक जेनरेटर:

इस प्रकार के जेनरेटर में दोनों फील्ड वाइंडिंग के फ्लक्स के योग ही परिणामी फ्लक्स होता है। अतः इसमें फ्लक्स का मान बढ़ता है। इसका फ्लक्स जुड़ने के कारण इसके वोल्टेज विशेषताएँ, शंट जेनरेटर से अच्छा होता है।

उपयोग: इसका उपयोग बड़े स्तर पर डीसी आपूर्ति के प्रयोग के लिए किया जाता है। संचयी यौगिक जनरेटर के अंतर्गत तीन प्रकार के जेनरेटर आते हैं।

- 1. फ्लैट कंपाउंड जेनरेटर
- 2. ओवर कंपाउंड जेनरेटर
- 3. अंडर कंपाउंड जेनरेटर

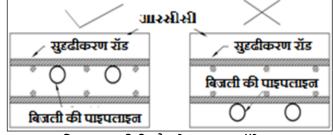
ये तीनों प्रकार के जेनरेटर में इसके दो फील्ड वाइंडिंग के फ्लक्स की मात्रा को नियंत्रित करके ही बनाया जाता है।

भवनों और अवसरंचना के निर्माण में आंतरिक विद्युतीकरण कार्य

संदीप जांगिड़ , एनआरएससी, हैदराबाद 🥒

वर्तमान परिदृश्य में, इमारतों और बुनियादी ढांचे का निर्माण बहुत तेजी से बढ़ रहा है। भारत में निर्माण उद्योग में रियल एस्टेट के साथ-साथ शहरी विकास खंड भी शामिल है। रियल एस्टेट खंड में आवासीय, कार्यालय, खुदरा, होटल और अवकाश पार्क शामिल हैं। जबिक शहरी विकास खंड में मोटे तौर पर उप-खंड जैसे जल आपूर्ति, स्वच्छता, शहरी परिवहन, स्कूल और स्वास्थ्य सेवा शामिल हैं। 2025 तक, भारत में निर्माण बाजार के तीसरे सबसे बड़े रूप में उभरने की उम्मीद है। 2022 से पहले भारत के प्रत्येक नागरिक को अपना घर उपलब्ध कराना भी सरकार का प्राथमिक लक्ष्य है। निर्माण क्षेत्र बुनियादी ढांचे की आवश्यकता को पूरा करने के लिए दिन-प्रतिदिन अपने पंख फैला रहा है। इसने बुनियादी ढांचे की आवश्यकता को बढ़ाया और निर्माण परियोजना के समयबद्ध समापन ने निर्माण क्षेत्र पर भारी दबाव डाला।

आंतरिक विद्युतीकरण, निर्माण परियोजना का प्रमुख हिस्सा है। समय बचाने के लिए और गुणवत्ता के काम को वितरित करने के लिए निर्माण के दौरान विद्युत कार्यों पर नजर रखना बहुत आवश्यक है। आंतरिक विद्युतीकरण के संबंध में गुप्त और सतह पाइपलाइन सामान्य अभ्यास है। आंतरिक विदुयुतीकरण के लिए काम करने के कुछ सुरक्षित और कुशल तरीके नीचे दिए गए हैं:


विद्युतीकरण के लिए संक्षिप्त और सतह नाली का काम:

भवन के निर्माण में विद्युतीकरण कार्यों के लिए उच्च ग्रेड हल्के स्टील (HGMS) और पीवीसी पाइपलाइन का उपयोग किया जाता है। निर्माण कार्य के दौरान क्षति को रोकने के लिए विद्युत कार्यों के लिए आईएसआई मार्क से युक्त विद्युत ग्रेड नाली का उपयोग किया जाना चाहिए। 32 मिमी व्यास तक नाली की न्यूनतम मोटाई 1.6 मिमी और 32 मिमी व्यास से ऊपर 2 मिमी होनी चाहिए।

नाली को विस्तार देने और उसमें शामिल होने के लिए युग्मक का उपयोग करना बहुत आवश्यक है। यह सुनिश्चित किया जाना चाहिए कि पीवीसी पाइपलाइन में विलायक सीमेंट के साथ जोड़ों को अच्छी तरह से सील किया गया है, आरसीसी स्लैब कास्टिंग / सिविल निर्माण कार्य के दौरान घोल की वजह से नाली को बंद होने से बचाने के लिए थ्रेडेड टाइप कपलर सामान का उपयोग उच्च ग्रेड हल्के स्टील पाइपलाइन के लिए किया जाना चाहिए। गुप्त पाइपलाइन में, मानक बैंड के उपयोग से बचा जाना चाहिए, सभी वक्रों को एक लंबे त्रिज्या के साथ नाली पाइप को मोडकर बनाना चाहिए जो आसान डाइंग-इन की अनुमति देगा। यदि आवश्यक हो तो ही लंबे बेंड का उपयोग किया जाना चाहिए और विलायक सीमेंट / इन्सुलेशन टेप के साथ ठीक से सील किया जाना चाहिए।

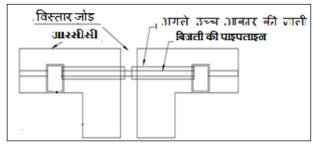
सुविधाजनक तारों के काम के लिए, जंक्शन / निरीक्षण बॉक्स को नाली स्थापना के दौरान निरंतर 2 बैंड के बाद प्रदान किया जाना चाहिए। सभी संघनित्र और बीम में ड्रॉप को बाध्यकारी तार की मदद से बांधा जाना चाहिए।स्टील के स्टढीकरण के बीच नाली को

ठीक से स्थापित किया जाना चाहिए। नाली स्थापना का सही तरीका चित्र (1) में दिखाया गया है, यह भी बेहतर अभ्यास है अगर समानांतर चलने वाले नाली के बीच न्यूनतम 1 इंच का अंतर बनाए रखा जाए। साथ गहन परिपत्र निरीक्षण / जंक्शन बॉक्स का उपयोग किया जाना चाहिए। दीवार में निरीक्षण बॉक्स की गहराई के लिए, नाली के आकार के अनुसार माना जाना चाहिए।

चित्र 1: आरसीसी स्लैब में कंडुइट इंस्टॉलेशन

विस्तार जोड विस्तार जोड़ ગારસીસી ગારસીસી बिजली की पाइपलाइन विजली की पाइपलाइन

आसान पहचान के लिए स्लैब कास्टिंग से पहले आरसीसी स्लैब में रखे बॉक्स को पेंट द्वारा ठीक से चिह्नित किया जाना चाहिए और आरसीसी चिपिंग कार्य से बचना चाहिए। इसी तरह बीम में नाली डॉप को ठीक से बांधा जाना चाहिए और स्विच बोर्ड और निरीक्षण बॉक्स के विस्तार के लिए डी-शटरिंग के बाद आसान पहचान के लिए शटरिंग प्लेटों पर पेंट के साथ ऐसी बुंदों के स्थान को चिह्नित किया जाना चाहिए। संभवतः अन्य नाली और चित्र 2: फॉल्स सीलिंग प्रस्तावित जोड़ों के माध्यम से विद्युत नाली आरसीसी स्तंभों के माध्यम से नाली पार करने से बचा जाना चाहिए।


भूकंप के दौरान इमारतों की सुरक्षा के लिए इमारतों के बीच दिया गया विस्तार स्थान एक अच्छा अभ्यास है। क्षैतिज विस्तार और आरसीसी संरचना के विस्तार के मद्देनजर इस तरह के विस्तार स्थान में विद्युत नाली और तारों को नुकसान से बचाने के लिए उचित रूप से रखा जाना चाहिए। वह क्षेत्र जहां फॉल्स सीलिंग प्रस्तावित है, विस्तार जोड़ों के माध्यम से विद्युत नाली की संरचना बनाई जा सकती है जैसा कि चित्र (2) में दिखाया गया है और उस क्षेत्र में जहां फॉल्स सीलिंग प्रस्तावित नहीं है, सौंदर्य और सुरक्षा के मद्देनजर विद्युत जोड़ों का विस्तार जोड़ों के माध्यम से योजना बनाई जा सकती है जैसा कि चित्र (3) में दिखाया गया है।

दीवार में छिपी हुई नाली को रखने के दौरान, नाली को बाध्यकारी तार से ठीक से बांधना चाहिए और समानांतर चलने वाले नाली के बीच पर्याप्त अंतर बनाए रखना चाहिए। दीवार में छिपी हुई नाली के काम को दीवार में दरार से बचने के लिए पलस्तर से पहले जीआई चिकन जाल के साथ बंद किया जाना चाहिए। स्विच बोर्ड के लिए जंक्शन बॉक्स और मॉड्यूलर बॉक्स को स्विच, सॉकेट्स और मॉड्यूलर प्लेटों की आसानी से स्थापना के लिए सी

सभी एचजीएमएस पाइप को स्विच बोर्ड और डिस्ट्रीब्यूशन बोर्ड तक बढ़ाया जाना चाहिए और अर्थिंग और सुरक्षा के मद्देनजर चेक नट्स के साथ अंत निर्धारित किया जाना चाहिए।

उपयुक्त लकड़ी के प्लग या अन्य प्लग और शिकंजा के साथ सतह पर 20 गेज गादल द्वारा नाली के पाइप को 75 सेमी से अधिक के अंतराल पर अनुमोदित तरीके से स्थापित किया जाना चाहिए। कप्लर्स और बेंड्स के लिए, दोनों तरफ ऐसे फिटिंग के केंद्र से 30 सेमी की दूरी पर काठी तय की जानी चाहिए। नाली के आकार के अनुसार काठी और स्पेसर का आकार चुना जाना चाहिए।

मेंट प्लास्टरिंग के स्तर पर रखा जाना चाहिए। सभी एचजीएमएस पाइप को स्विच बोर्ड और डिस्ट्रीब्यूशन बोर्ड तक बढ़ाया जाना चाहिए और अर्थिंग और सुरक्षा के मद्देनजर चेक नट्स के साथ अंत निर्धारित किया जाना चाहिए।

चित्र 3: फॉल्स सीलिंग प्रस्तावित जोड़ों के माध्यम से विद्युत नाली की संरचना

उपयुक्त लकड़ी के प्लग या अन्य प्लग और शिकंजा के साथ सतह पर 20 गेज गादल द्वारा नाली के पाइप को 75 सेमी से अधिक के अंतराल पर अनुमोदित तरीके से स्थापित किया जाना चाहिए। कप्लर्स और बेंड्स के लिए, दोनों तरफ ऐसे फिटिंग के केंद्र से 30 सेमी की दूरी पर काठी तय की जानी चाहिए। नाली के आकार के अनुसार काठी और स्पेसर का आकार चुना जाना चाहिए।

तालिका 1: अधिकतम संख्या में अनुमेय तार जो कि नाली में खींचे जा सकते है।

तारों का आकार मिमी² में		नाली (पीवीसी / एचजीएमएस) का आकार (मिमी में)							
	20	25	32	40	50	63			
1	5	10	14	-	1	-			
1.5	5	10	14	-	-	-			
2.5	5	8	12	-	-	-			
4	3	8	10	-	-	-			
6	2	5	8	-	-	-			
10	-	3	5	6	-	-			
16	-	-	3	6	-	-			
25	-	-	2	4	6	7			
35	-	-	-	3	5	6			
50	-	-	-	-	4	5			

नाली स्थापना के बाद विद्युतीकरण कार्य:

इमारतों के अंदर स्विचबोर्ड को आसान सुलभ स्थान पर रखा जाना चाहिए। सभी छुपा हुआ मॉड्यूलर बॉक्स मुख्य वितरण बोर्डों के साथ ठीक से ग्राउंडिंग होना चाहिए। विद्युत बिंदुओं की विशिष्ट स्थापना ऊंचाई तालिका 2 में दिखाई गई है।

तालिका 2: विद्युत बिंदुओं की स्थापना ऊंचाई।

विद्युत बिंदु	समाप्त मंजिल स्तर (एफएफएल) से ऊंचाई। (मीटर में)
मुख्य प्रकाश नियंत्रण स्विच बोर्ड	1.20
बेड साइड लाइटिंग कंट्रोल स्विच बोर्ड	0.60
मुख्य वितरण बोर्ड	1.20
वॉल माउंटेड लाइट पॉइंट्स	2.50
दीवार में A / C कंट्रोल पॉइंट	1.20
शौचालय में गीजर बिंदु	1.50
कॉल बेल / बजर अंक	2.50
फ्रिज बिंदु	1.20
रसोई में मंच के ऊपर बिजली अंक (मंच स्तर से)	0.30
फुट लाइटिंग पॉइंट	0.30
दर्पण लाइटिंग पॉइंट	2.00
टीवी के लिए टीवी पॉइंट	0.75
फैन पॉइंट (एफएफएल से अधिकतम ऊंचाई)	2.70

बाहरी अनुप्रयोग के लिए विद्युत बिंदुओं को धूल और नम वातावरण से बचाने के लिए मौसम सील बॉक्स के साथ रखा जाना चाहिए।

ऐसे बिंदुओं के लिए विद्युत उपकरणों में उपयुक्त प्रवेश सुरक्षा होनी चाहिए। बाहरी विद्युत बिंदुओं और सहायक उपकरण को विद्युत आपूर्ति को सीलबंद ग्लैंड की मदद से बढ़ाया जाना चाहिए। सभी बाहरी विद्युत बिंदुओं को सुरक्षा के मद्देनजर मुख्य स्विच बोर्ड के साथ ठीक से ग्राउंडिंग किया जाना चाहिए।

सभी प्रकाश बिंदुओं को अलग तटस्थ और पृथ्वी के तार से जोड़ा जाना चाहिए; यदि सिस्टम के किसी भी बिंदु में गलती होती है और सिस्टम में गलती की पहचान के लिए अन्य बिजली के उपकरणों की रक्षा करने में मदद मिलेगी। अब बाजार में बिजली के तारों के बहुत सारे प्रकार उपलब्ध हैं: FR: अग्निरोधी एफआरएलएस: अग्निरोधी कम धुआं FRLSH / FRLSZH: अग्निरोधी कम धुआं और हलोजन मुक्त। एक अच्छे अभ्यास के लिए, बिजली के तारों के काम के लिए FRLS / FRLSH तार का उपयोग किया जाना चाहिए।

सुरक्षा के लिए घर / भवन के मुख्य वितरण बोर्ड में पृथ्वी रिसाव संरक्षण, अधिभार संरक्षण, शॉर्ट सर्किट संरक्षण सुनिश्चित किया जाना चाहिए। आवासीय भवन के लिए, अधिभार संरक्षण के साथ पृथ्वी रिसाव संरक्षण सर्किट ब्रेकर को वितरण बोर्डों में मुख्य अपूर्ण के रूप में स्थापित किया जाना चाहिए। घर के मुख्य वितरण बोर्ड के लिए अविशष्ट वर्तमान / पृथ्वी रिसाव संरक्षण 100mA से अधिक नहीं होना चाहिए, इसी तरह स्विच बोर्ड के प्रत्येक आउटगोइंग सर्किट का प्रकाश भार विद्युतीकरण कार्यों में 800 वाट

से अधिक नहीं होना चाहिए। भवन के बेहतर विद्युतीकरण डिजाइन के लिए, विद्युत भार प्रत्येक चरण पर समान रूप से वितरित किया जाना चाहिए। • सभी आउटगोइंग और इनकमिंग सर्किट और डिस्ट्रीब्यूशन बोर्ड के स्विचिंगयर को सही ढंग से स्टैंसिल किया जाना चाहिए और डीबी के दरवाजे के अंदर एक विद्युत वितरण चार्ट चिपकाया जाना चाहिए।

स्थापना के बाद वायरिंग प्रणाली का परीक्षण: निम्नलिखित परीक्षण सभी प्रकार के तारों पर काम पूरा करने और स्थापना को सक्रिय करने से पहले किया जाना चाहिए।

1. इन्सुलेशन प्रतिरोध परीक्षण

तारों की स्थापना के इन्सुलेशन प्रतिरोध को निम्नलिखित बिंदुओं के बीच 500V मेगर द्वारा मापा जाना चाहिए।

- (क) चरण में सभी एमसीबी के साथ चरण और तटस्थ कंडक्टर और बंद स्थिति में सभी स्विच और हटाए गए लैंप और अन्य उपकरणों के साथ बंद स्थिति में मुख्य स्विच।
- (ख) पृथ्वी और सभी MCBs के साथ कंडक्टर की पूरी प्रणाली के बीच, सभी स्विच बंद हो गए और सभी लैंप स्थिति में हैं।
- (ग) आपूर्ति के एक चरण से जुड़े सभी कंडक्टरों के बीच और कंडक्टर स्थिति में सभी लैंपों के साथ तटस्थ से जुड़ा हुआ है और बंद स्थिति में स्विच करता है।
- (घ) उपरोक्त परीक्षणों में से प्रत्येक के द्वारा प्राप्त मेगा ओम में इन्सुलेशन प्रतिरोध सर्किट पर बिंदुओं की संख्या से 50 से कम विभाजित नहीं होना चाहिए, जहां एक पूर्ण स्थापना का परीक्षण निम्न मान से कम किया जा रहा है, जो उपरोक्त सूत्र द्वारा दिए गए स्वीकार्य विषय है न्यूनतम एक मेगा ओम।

2. विद्युत निरंतरता परीक्षण:

मल्टीमीटर का उपयोग करके प्रत्येक और प्रत्येक सर्किट / फीडर को विद्युत निरंतरता के लिए परीक्षण किया जाना चाहिए।

3. ग्राउंडिंग निरंतरता परीक्षण:

धातु की नाली सिहत पृथ्वी की निरंतरता कंडक्टर का विद्युत निरंतरता के लिए परीक्षण किया जाएगा और पृथ्वी इलेक्ट्रोड के साथ किसी भी बिंदु पर पृथ्वी इलेक्ट्रोड कंडक्टर के साथ पूर्ण स्थापना में मापे गए अर्थिंग लीड के साथ ही प्रतिरोध का एक से अधिक होना नहीं चाहिए।

4. पृथ्वी इलेक्ट्रोड प्रतिरोध परीक्षण:

वितरण बोर्ड के सभी भूतारों को मुख्य पृथ्वी इलेक्ट्रोड से जोड़ा जाना चाहिए। पृथ्वी इलेक्ट्रोड के मूल्य को एक विश्वसनीय और कैलिब्रेटेड पृथ्वी बर्गर का उपयोग करके मापा जाना चाहिए। पृथ्वी प्रतिरोध का मान 5 ओम से अधिक नहीं होना चाहिए।

5. स्विच ध्रुवता परीक्षण:

परीक्षण यह सत्यापित करने के लिए किया जाना चाहिए कि हर सर्किट में सभी स्विच एक ही कंडक्टर भर में फिट किए गए हैं और चरण कंडक्टर के कनेक्शन के लिए ऐसे कंडक्टर को चिह्नित किया जाना चाहिए।

सिविल अभियात्रिकी

कन्हाई कुमार, एनआरएससी, हैदराबाद 🥻

सिविल अभियांत्रिकी एक पेशेवर अभियंत्रण अनुशासन है जो भौतिक और प्राकृतिक रूप से निर्मित पर्यावरण के डिजाइन, निर्माण और रखरखाव से संबंधित है। सिविल अभियांत्रिकी का सबसे पहला अभ्यास प्राचीन मिस्र में 4000 ईसा पूर्व से 2000 ईसा पूर्व के बीच शुरू हो सकता है। मिस्र में पिरामिड सिविल अभियांत्रिकी में पहली बड़ी संरचना निर्माण है, योजना और निष्पादन महत्वपूर्ण भूमिका निभाता है और यह संरचना को पूर्ण प्रदान करता है, जिस समाज में पेशेवर जीवन व्यतीत करते हैं। सिविल अभियांत्रिकी की सबसे बड़ी उपलब्धि घर की गारंटी देकर मन की शांति प्रदान करने की क्षमता है। पर्यावरण की सुरक्षा के लिए सर्वोत्तम संभव स्थायी समाधान और सुरक्षित पेयजल, उचित स्वच्छता और अपशिष्ट और अपशिष्ट जल उपचार प्रदान करने के लिए इसके संसाधनों के विवेकपूर्ण उपयोग द्वारा प्रदान की जाने वाली मातृ-प्रकृति की तीव्र क्रूरता का सामना करने के बाद भी संरचना मजबूत होनी चाहिए। सिविल अभियांत्रिकी प्रसिद्ध एडीस्टोन लाइटहाउस का एक उदाहरण- जिसे अब स्मीटन टावर कहा जाता है।

टावर की विशेषता: पहली बार आधुनिक हाइड्रोलिक सीमेंट और सुपर स्ट्रक्चर में कंक्रीट के डोवेटेल ब्लॉकों को शामिल करने वाली अन्य उन्नत तकनीकों का उपयोग है। सिविल अभियांत्रिकी चुनौती में किसी ऐसी चीज का सामना करने की स्थिति के रूप में जिसे सफलतापूर्वक करने के लिए मानसिक और शारीरिक प्रयास की आवश्यकता होती है और एक व्यक्ति की क्षमता का परीक्षण करता है। सिविल अभियांत्रिकी चुनौती का सामना करते हैं और केवल सिविल अभियंत्रण ही सभी अनुशासन के उद्देश्य को पूरा करते हैं और उनकी सहायता करते हैं।

व्यवसाय

सिविल अभियंता के लिए कई विशिष्ट व्यावसायिक मार्ग है। ज्यादातर अभियंता स्नातक अपना काम छोटी-मोटी जिम्मेदारियों से ही शुरू करते हैं और जैसे-जैसे वो अपनी उपयोगिता साबित करते चले जाते हैं, वैसे-वैसे उनको और ज्यादा जिम्मेदारियों भरे काम सौंपे जाते हैं। लेकिन उनको वही काम सौंपा जाता है जो सिविल अभियांत्रिकी के उपक्षेत्र के अन्दर आते हो या फिर अगर वे प्रत्येक शाखा के बाज़ार के विभिन्न खंडों के अर्न्तगत भी आते हों, तो उन्हें वो काम सौंपा जा सकता है, लेकिन व्यावसायिक मार्ग एक दूसरे से अलग हो सकते हैं। कुछ क्षेत्रों और कंपनियों में, जिन इंजीनियरों ने अभी-अभी काम करना शुरू किया है उनको शुरुआत में निर्माण कार्य की निगरानी रखने का काम सौंपा जाता है। वहां पर वो विरष्ठ डिजाइन इंजीनियरों के लिए "आँख और कान" का काम करते हैं, जबिक अन्य क्षेत्रों में, प्रवेश स्तर के इंजीनियरों को अधिक से अधिक विश्लेषण या डिजाइन और विवेचनात्मक कार्यों को नियमित रूप से करना पड़ता है। विरष्ठ इंजीनियरों को अधिक जटिल विश्लेषण या डिजाइन या अधिक जटिल डिजाइन परियोजनाओं या अन्य दूसरे इंजीनियरों का संचालन जैसे कार्य करने पड़ सकते हैं या फिर उन्हें विशेष परामर्श के कार्य सौंपे जा सकते हैं ,जिसमें फॉरेंसिक इंजीनियरिंग शामिल है।

उप-शाखा

सामान्यतः, सिविल अभियांत्रिकी मानव द्वारा निर्मित तय परियोजनाओं का बृहद दुनिया के साथ एक पूर्ण अंतरफलक है। आम सिविल इंजीनियर सर्वेक्षकों के साथ मिलकर काम करते हैं और विरष्ठ सिविल इंजीनियरों को दिए गए कार्यस्थल, समूह एवं भू-भाग पर निर्धारित परियोजनाओं में श्रेणीकरण को डिजाइन, जल निकासी, जल आपूर्ति, नाली से जुड़े कार्यों, बिजली आपूर्ति में मदद और संचार आपूर्ति एवं भूमि विभाजन करके वो उनकी मदद करता है। आम इंजीनियर अपना ज्यादा समय परियोजना स्थलों के दौरों में, वहां की सामुदायिक आम सहमित और निर्माण कार्य की योजना को तैयार करने में लगाता है। आम सिविल इंजीनियरिंग को साइट इंजीनियरिंग,भी कहा जाता है, जो कि सिविल इंजीनियरिंग की एक ऐसी शाखा है जिसका मुख्य केंद्र है -भूमि के एक हिस्से को एक प्रयोग से दूसरे प्रयोग के लिए परिवर्तित करना। सिविल इंजीनियरिंग वैशिष्ट रूप से भू-तकनीक इंजीनियरिंग, संरचनात्मक इंजीनियरिंग, पर्यावरण इंजीनियरिंग, परिवहन इंजीनियरिंग और निर्माण इंजीनियरिंग के सिद्धांतों को आवासीय, व्यापारिक और सार्वजनिक कार्य परियोजनाओं में निर्माण के सभी आकारों और स्तरों पर लागू करते हैं।

विभिन्न क्षेत्रों में सुदूर संवेदन की उपयोगिता

संध्या पिस्से ,एनआरएससी, हैदराबाद

सुदूर संवेदन वह विज्ञान या तकनीक है, जो उपयोगी निर्णय लेने के लिए किसी भी निर्दिष्ट वस्तु, घटना या क्षेत्रों की जानकारी को उनके साथ सीधे संपर्क में आये बिना, उनके बारे में पूरा विवरण या विश्लेषण सही मात्रा में प्राप्त किया जा सकता है। सुदूर संवेदन के अनुप्रयोगों में भूमि उपयोग मानचित्रण, मौसम पूर्वानुमान, पर्यावरण अध्ययन, प्राकृतिक खतरों का अध्ययन और संसाधन अन्वेषण शामिल हैं। आज-कल विज्ञान की इतनी तरक्की हुई है, जिसका उपयोग करके मानव हित के लिए बहुत मदद मिल रही है।

सुदूर संवेदन तीन प्लेटफॉर्म्स में उपयोग किया जा सकता है।

- 1. ग्राउंड लेवल सुदूर संवेदन
- 2. एरियल लेवल सुदूर संवेदन
- 3. स्पेसबॉर्न लेवल सुदूर संवेदन

ग्राउंड लेवल सुदूर संवेदन में टावर या क्रेन के उपयोग करके जानकारी प्राप्ति की जाती है।

एरियल लेवल सुदूर संवेदन में हेलीकाप्टर, हाई -ऐलटिटूड हेलीकाप्टर के उपयोग करके जानकारी प्राप्त की जाती है।

स्पेसबॉर्न लेवल सुदूर संवेदन में उपग्रह, अंतरिक्ष उपग्रह, स्पेस शटल, पोलर-ऑर्बिटिंग सैटेलाइट और जियोस्टेशनरी सैटेलाइट की मदद से जानकारी की प्राप्ति की जाती है।

सुदूर संवेदन के उपयोग करके विभिन्न क्षेत्रों में जानकारी और सहायता ली जा सकती है। जैसे कि

वातावरण के अध्ययन और पूर्वानुमान , प्राकृतिक आपदाओं के अध्ययन, संसाधन के विश्लेषण भूस्तर के मानकीकरण , प्रशासन की मदद आदि ।

वातावरण के अध्ययन और पूर्वानुमान :

पर्यावरण अध्ययन- इसका उपयोग वनों की कटाई, उपजाऊ भूमि के क्षरण, वातावरण में प्रदूषण, मरुस्थलीकरण, बड़े जल निकायों के यूट्रोफिकेशन और तेल टैंकरों से तेल रिसाव का अध्ययन करने के लिए किया जा सकता है।

मौसम का पूर्वानुमान-भारत में मौसम पूर्वानुमान के लिए रिमोट सेंसिंग का व्यापक रूप से उपयोग किया जाता है। इसका उपयोग लोगों को आने वाले चक्रवातों के बारे में चेतावनी देने के लिए भी किया जाता है।

आजकल वातावरण इस तरह बदल रहा है कि कुछ अंदाजा नहीं लगा सकते हैं, जैसे कि चक्रवात, तूफ़ान, बाढ़, भारी वर्षा आदि के सन्दर्भ में पहले से सूचना मिल जाती है, उसकी सहायता से सभी को पहले से ही जागरूक करके और जो होनेवाले नुकसान को कम किया जा सकता है। प्रदूषण जैसे - वायू, जल और धरती पर प्रदूषण की मात्रा का अनुमान लगा सकते हैं।

प्राकृतिक आपदाओं के अध्ययन: वातावरण में हुए बहुत सारे बदलाव के कारण कभी कभी प्राकृतिक आपदाएं संभव है। ध्रुवीय क्षेत्रों में बर्फ का पिघलना, जंगल की आग, भूकंप, चक्रवात, बाढ़ जैसे आपदाओं को पहले से ही अनुमान करके उससे कैसे बच सकते हैं, लोगों को मदद कर सकते हैं, उन्हें सुरक्षित जगहों पर भेज सकते हैं। जैसे जंगल में आग लग जाए तो उसे पहले ही काबू कर सकते हैं। फायर इंजन या हेलीकोप्टर की मदद से आग पर काबू कर सकते हैं। भूकंप का अनुमान पहले ही लगा सकते हैं।

संसाधन का अन्वेषण: रिमोट सेंसिंग डेटा मौजूदा भूवैज्ञानिक मानचित्रों को अद्यतन करने, लाइनमेंट और टेक्टोनिक मानचित्रों को तेजी से तैयार करने, खनिजों के उत्खनन के लिए स्थलों की पहचान करने और जीवाश्म ईंधन जमा का पता लगाने में सहायक है। सुदूर संवेदन की मदद से खनिज की खोज,धरती के भीतर जो खनिज है उनका विश्लेषण किया जा सकता है।

भूस्तर का माननीकरण: सुदूर संवेदन का उपयोग करके भूस्तर का माननीकरण कर सकते हैं। शहरों के विकास की योजनाओं में यह बहुत उपयोगकारी है। गूगल मैप्स के जैसे विषय में भी सुदूर संवेदन के उपयोग से ही जानकारी मिलती है।

प्रशासन की मदद: फसलों की उपज और फसलों के नुकसान के बारे में प्रशासन को अंदाजा लगाने में सुदूर संवेदन मदद करता है। सड़कों की हालत का पता करके, उसमें सुधार करने के लिए सुदूर संवेदन की मदद प्रशासन को मिलती है। इस जानकारी का उपयोग क्षेत्रीय योजनाकारों और प्रशासकों द्वारा क्षेत्र के सर्वांगीण विकास के लिए नीतिगत मामलों को तैयार करने के लिए किया जाता है। शहरों की तरक्की और उसे डिज़ाइन करने के लिए अमृत जैसे योजनाओं को भारत अपना रहा है।

सुदूर संवेदन वह विज्ञान है, जो विद्युत् की चुंबकीय शक्ति के द्वारा वस्तु या क्षेत्रों के बारे में पूरी जानकारी, विश्लेषण किया जा सकता है। रॉकेट प्रक्षेपण की मदद से बहुत सारे उपग्रह अंतिरक्ष में रह कर भूमण्डल के अलग अलग जगहों की रियल टाइम के चित्र खींच उन्हें एकत्र करके उसके विषय की जानकारी प्राप्त कर सकते हैं। भूमण्डल में जो भी बदलाव हो रहे है, उन्हें बारीकी से अध्ययन करने में सुदूर संवेदन बहुत ही मददगार है। भूक्षरण की क्षिति, जंगलों की कटाई, प्राकृतिक बदलाव, समुन्दर में तेल टैंकरों से तेल का रिसाव जैसे विषयों के बारे में जान सकते हैं। युद्ध क्षेत्रों में सेना को शत्रुओं के स्थान के बारे में भी जानकारी मिल सकती है।

भारत में सुदूर संवेदन के क्षेत्र में बहुत तरक्की हुई है, इस विज्ञान का इस्तेमाल करके अपने देश की उन्नति के लिए काम कर सकते हैं।

अबाधित विद्युत आपूर्ति

संजीव कुमार स्वैन, एनआरएससी, हैदराबाद

यूपीएस एक ऐसा उपकरण होता है जो विद्युत से चलने वाले किसी उपकरण को उस स्थिति में भी सीमित समय के लिये विद्युत की समुचित आपूर्ति सुनिश्चित करता है, जब आपूर्ति के मुख्य स्रोत (मेन्स) से विदुयुत आपूर्ति उपलब्ध नहीं होती।

कार्य

यूपीएस का उपयोग कम्प्यूटरों, आंकड़ा केन्द्र, संचार उपकरणों, आदि के साथ प्राय: किया जाता है, जहाँ कि विद्युत जाने से कोई दुर्घटना हो सकती है; महत्त्वपूर्ण आंकड़े नष्ट होने का डर हो; व्यापार का नुकसान आदि हो सकता हो। यूपीएस न सिर्फ कंप्यूटर को ऐसे अनेको उपकरण को वोल्टेज कम-ज्यादा होने की स्थिति में हानि से बचाता है, बल्कि विद्युत आपूर्ति चले जाने की स्थिति में कुछ समय बाद तक कंप्यूटर और अन्य उपकरण को विद्युत प्रदान करता है, जिससे उपयोक्ता अपना किया हुआ काम सहेज लेते हैं और कंप्यूटर को सही तरीके से शट डाउन कर पाते हैं। यदि कंप्यूटर की विद्युत आपूर्ति एकदम से चली जाए या अस्थिर हो जाये तो इससे हार्ड डाइव और रैम खराब होने की संभावना रहती है तथा मदरबोर्ड भी खतरे में पड सकता है और संचार उपकरण की डेटा लॉस होने का खतरा रहता है। यूपीएस में वोल्टता नियंत्रण,शक्ति गुणांक वर्धन एवं यूपीएस में ऊर्जा-संचय करने का एक साधन होता है , जिसे बैटरी कहते हैं , जिससे यूपीएस इस खतरे से कम्प्यूटर को बचा पाये। ये ध्यान रखना चाहिये कि यूपीएस को बाहरी उपकरणों से ओवरलोड न करें जैसे अनावश्यक प्रिंटर, स्कैनर और फैक्स मशीन आदि लगाना। कभी भी प्रिंटर को बैटरी बैक अप सिस्टम में प्लग न करें।

प्रकार

यूपीएस दो प्रकार का होता है,

ऑफलाइन यूपीएस एवं ऑनलाइन यूपीएस

ऑफलाइन यूपीएस:-

इसी प्रकार यूपीएस या तो ऑफलाइन प्रकार का हो सकता है या लाइन-इन्टरैक्टिव प्रकार का हो सकता है। ऑफलाइन यूपीएस सारा लोड बैटरी पर डाल देता है। स्विचओवर करने का रिस्पांस टाइम2 से 10 मिनट होता है. जिसे स्विचिंग टाइम भी कहते हैं। ज्यादातर स्विचिंग-मोड पॉवर सप्लाई (एसएमपीएस) का होल्ड अप टाइम 16 मिनट से कम होता है, जो यूपीएस के स्विचिंग टाइम से अधिक होता है जिसे कारण कंप्यूटर शटडाउन की समस्या नहीं होगी। वर्तमान में मिलने वाले अधिकतर यूपीएस लाइन इंटरैक्टिव यूपीएस होते हैं। ये एक सीमा तक इनपुट एसी (ऑल्टरनेटिव) पॉवर को नियंत्रित करते हैं और बैटरी एसी पॉवर से चार्ज हो जाती है। इतना ही नहीं, इस तरह के यूपीएस छोटे आकार के होते हैं और अधिकतर उत्पादकों के पास उपलब्ध होते हैं।

ऑनलाइन यूपीएस

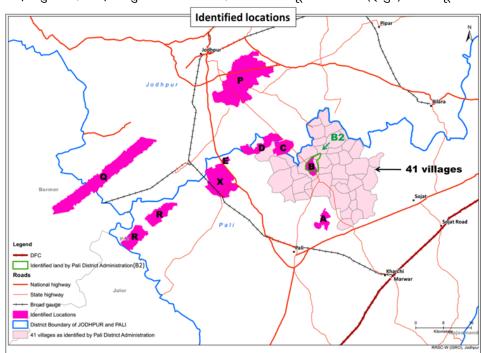
ऑनलाइन यूपीएस तुलनात्मक रूप से महंगे होते हैं। इस डिजाइन में बैटरी इन्वर्टर के द्वारा चार्ज होता है। चूंकि एसी लाइन से सीधा जुड़ाव नहीं होता, इससे लाइन में कोई गड़बड़ी होने का असर यूपीएस पर नहीं पड़ता। इस प्रकार का यूपीएस हॉस्पिटल एवं महत्वपूर्ण कार्य में उपयोग किया जाता है।

क्षमता

यूपीएस की शक्ति क्षमता (पॉवर रेटिंग) अधिक होनी चाहिये। अधिकतर यूपीएस इस तरह डिजाइन किए जाते हैं कि विद्युत जाने के 20 मिनट बाद तक उनसे जुड़े उपकरण काम कर सकते हैं। इसके लिए वोल्ट एंपीयर रेटिंग ध्यान रखनी होती है। एंपीयर रेटिंग कंप्यूटर/उपकरण पर लिखी होती है, जिसे वोल्टेज (220/415 वोल्ट) से गुणा कर सकते हैं। ऐसा यूपीएस लेना चाहिये, जिसकी वी.ए. रेटिंग 20 से 24 प्रतिशत ज्यादा हो। अधिकतर पीसी के लिए 600 वोल्ट-एंपीयर की दर का यूपीएस काफी रहता है। ज्यादातर यूपीएस बैकअप टाइम के आधार पर लिया जाता है जिससे उसकी पूरी क्षमता का ज्ञान नहीं हो पाता है। बैटरी बैकअप पूरी तरह से इस बात पर निर्भर करता है कि जुड़ने वाला उपकरण कितनी ऊर्जा ले रहा है। उपकरण जितना शक्तिशाली होगा, ऊर्जा की खपत उतनी ज्यादा करेगा।

भू-स्थानिक प्रौद्योगिकी का उपयोग

सुपर्ण पाठक, आरआरएससी-जोधपुर



राजस्थान सूचना प्रौद्योगिकी निवेश क्षेत्र (आर.आई.टी.आई.आर.) के लिए स्थल की पहचान हेतु भू-स्थानिक प्रौद्योगिकी का उपयोग :

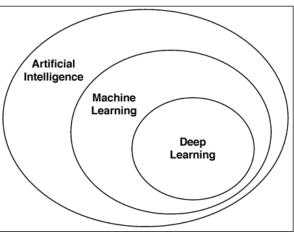
सूचना प्रौद्योगिकी (आई.टी.), सूचना प्रौद्योगिकी समर्थित सेवा (आई.टी.ई.एस.) एवं विशेष रूप से इलेक्ट्रॉनिक हार्डवेयर विनिर्माण में निवेश को बढ़ावा देने के लिए, भारत सरकार ने सूचना प्रौद्योगिकी निवेश क्षेत्र (आई.टी.आई.आर.) स्थापित करने के लिए पारदर्शी व अनुकूल नीतियां प्रदान करके व्यापक निवेश को आकर्षित करने का निर्णय लिया है। दिल्ली-मुंबई औद्योगिक गलियार (डी.एम.आई.सी.) / पश्चिम समर्थित मालवाहक गलियारा (डब्ल्यू.डी.एफ.सी.) के साथ राजस्थान-आई.टी.आई.आर. को विकास नोड के रूप में स्थापित करने के लिए उपयुक्त स्थलों की पहचान के लिए भू-स्थानिक प्रौद्योगिकी का उपयोग करके एक अध्ययन किया गया था।

औद्योगिक क्षेत्रों का पता लगाने के लिए उपयुक्त क्षेत्रों का विश्लेषण करने हेतु जी.आई.एस. परिवेश में बहु-पैमानों पर विभिन्न विषयगत परतों के जनन के लिए बहु-संवेदक एवं बहु-कालिक अंतरिक्ष आधारित सूचना निवेश (इन्पुट) और भूसंपत्ति

आंकडाआधार (डेटाबेस) के साथ अंकीय उच्चावच प्रतिरूप (डिजिटल एलिवेशन मॉडल) का उपयोग किया गया था। हवाई अड्डो और प्रमुख शहरों से दूरी और मौजूदा भूमि उपयोग के आधार पर क्षेत्रों को प्राथमिकता दी गई। उपरोक्त के संयोजन में. सात वर्षों की अवधि के दौरान शस्य-क्षेत्रफल के संदर्भ में उच्च मान (गर्म स्थल) और निम्न मान (शीत स्थल) के स्थानिक समहों (क्लस्टर) की पहचान के लिए हॉट-स्पॉट विश्लेषण भी किया गया था।

	Criteria ->	Tota	l area		Aminultura	Caldanat	Wasteland	Water	Dista	nce from	(km)
Locati on	Location indication	Hectares	Acres	Built-up %	Agriculture land %	Coldspot %	Wasteland %	Water bodies %	Jodhpur Airport	Pali City	DMIC / Marwar Junction
Α	Near Pali Industrial Area	296	732	② 0	Ø 1	954	⊘ 95	3	3 55	2 12	2 26
В	Near Sardar Samand	307	759	0.8	0.5	952	98.5	0.1	<u>40</u>	2 5	40
В2	Near Sardar Samand; As provided by SDM Office, Pali	1,356	3,351	2 .9	⊘1.1	⊗ 36	⊘ 86.4	⊘ 0.5	<u>0</u> 40	2 26	4 0
В3	Surrounding villages that includes B2 area	61,583	1,52,172	☑1.9	77.6	⊗ 12.4	⊗ 20.2	⊗ 3.6	<u>@</u> 40	2 26	40
E	Along Jodhpur-Pali Highway	289	714	② 0.3	0 0	7 3	98.6	② 1.1	<u>27</u>	33	959
х	Near Rohat (adopted from Website)	7,773	19,207	2.6	❷83.3	⊘ 85	⊗ 13.6	⊘ 0.5	33	@ 29	957
Р	South-east of Jodhpur Airport	73,517	1,81,661	⊘ 0.5	2 17.1	9 99	◎ 0.3	⊘ 0.0	10	⊗ 52	⊗ 71
Q	long patch	1,22,710	3,03,216	⊘ 0.1	⊘ 9.0	9 99	◎ 0.2	⊘ 0.0	⊗ 44	⊗ 60	88
R	Two parts	1,582	3,909	0.5	⊗ 314.5	30	⊗ 13.6	0 0.9	⊗ 50	43	⊗ 72

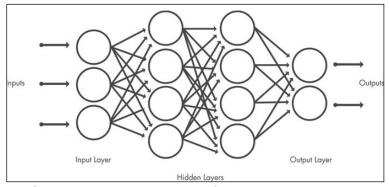
डीप लर्निंग एवं सुदूर संवेदन में डीप लर्निंग का महत्व


जया सक्सेना, एनआरएससी, हैदराबाद

सारांश:

कंप्यूटर विज्ञान के क्षेत्र में डीप लर्निंग एक उभरता हुआ क्षेत्र है और तेजी से विकसित हो रहा है। यह आर्टिफिशियल इंटेलिजेंस के क्षेत्र में आता है और मशीन लर्निंग का एक उप-क्षेत्र है, जैसा कि चित्र 1.1 में दिखाया गया है। इसने अनेक क्षेत्रों में अपनी दक्षता साबित की है और ऑब्जेक्ट डिटेक्शन, इमेज वर्गीकरण, स्पीच रिकग्निशन आदि के कार्यों में अत्याधुनिक सटीकता प्रदान करता है।

बड़ी मात्रा में डेटा की उपलब्धता उन्हें प्रशिक्षण देकर गहन शिक्षण मॉडल के उपयोग की सुविधा प्रदान करती है। डीप लर्निंग विशिष्ट मशीन लर्निंग तकनीकों से भिन्न होती है, जिसमें यह मानव से हाथ-कोडित नियमों या डोमेन ज्ञान की आवश्यकता के बिना फ़ोटो, वीडियो या टेक्स्ट जैसे डेटा से प्रतिनिधित्व सीख सकता है। उनके अत्यधिक अनुकुलनीय सिस्टम सीधे कच्चे डेटा से सीख सकते हैं और


चित्र 1.1: आर्टिफिशियल इंटेलिजेंस, मशीन लर्निंग और डीप लर्निंग का अवलोकन

पूर्वानुमान सटीकता में स्धार कर सकते हैं क्योंकि अधिक डेटा प्रदान किया जाता है।

मूल लेख:

डीप लर्निंग (डीप स्ट्रक्चर्ड लर्निंग के रूप में भी जाना जाता है) कृत्रिम तंत्रिका नेटवर्क पर आधारित मशीन लर्निंग विधियों के एक व्यापक परिवार का हिस्सा है। यह मनुष्य के ज्ञान प्राप्त करने के तरीके का अनुकरण करता है।

यह मानव मस्तिष्क की संरचना से प्रेरित है। डीप लर्निंग एलगोरिदम उसी तरह के निष्कर्ष निकालने का प्रयास करते हैं जैसे मनुष्य किसी दिए गए

तार्किक संरचना के साथ डेटा का लगातार विश्लेषण करते हैं। इसे प्राप्त करने के लिए, डीप लर्निंग एल्गोरिदम की एक बहु-स्तरित संरचना का उपयोग करता है जिसे तंत्रिका नेटवर्क कहा जाता है।

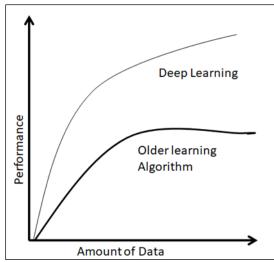
मानव मस्तिष्क की तंत्रिका संरचना ने तंत्रिका नेटवर्क को प्रेरित किया। मानव मस्तिष्क के मूल निर्माण खंड को न्यूरॉन कहा जाता है। यह एक मानव न्यूरॉन के समान कार्य करता है जिसमें यह इनपुट स्वीकार करता है और एक आउटपुट उत्पन्न करता है, जिसे चित्र 1.2 में दर्शाया गया है -

चित्र 1.2 : तंत्रिका नेटवर्क

तंत्रिका नेटवर्क की व्यक्तिगत परतों को एक प्रकार के फिल्टर के रूप में भी माना जा सकता है जो सकल से सूक्ष्म तक काम करता है, जिससे सही परिणाम का पता लगाने और आउटपुट करने की संभावना बढ़ जाती है।

मानव मस्तिष्क इसी तरह काम करता है। जब भी हमें कोई नई जानकारी मिलती है, तो मस्तिष्क ज्ञात वस्तुओं से उसकी तुलना करने की कोशिश करता है। इसी अवधारणा का उपयोग गहरे तंत्रिका नेटवर्क द्वारा भी किया जाता है।

अंतः विषय कार्यों के लिए कृत्रिम बुद्धि के दृष्टिकोण अधिक सामान्य हो गए हैं, क्योंकि वे अनुकूली हैं और स्वायत्तता प्रदान करते हैं। कृत्रिम तंत्रिका नेटवर्क (एएनएन) को मानव मस्तिष्क के तंत्रिका तंत्र की नकल करने के लिए डिज़ाइन किया गया है। इसमें विभिन्न परतों में स्थित नोड़स या न्यूरॉन्स होते हैं जिन्हें इनपूट, आउटपूट और छिपी हुई परतें कहा जाता है। आमतौर पर केवल



एक प्रवेश द्वार, एक निकास और एक या अधिक छिपे हुए स्तर होते हैं। इष्टतम नेटवर्क प्रदर्शन प्रदान करने के लिए आउटपुट स्तर को छोड़कर आमतौर पर प्रत्येक स्तर पर पूर्वाग्रह नोड का एक सेट जोड़ा जाता है। प्रत्येक नोड भारित पथों द्वारा अगले स्तर के सभी नोड्स से जुड़ा होता है। नोड गतिविधि एक सक्रियण फ़ंक्शन का परिणाम है जिसमें सभी भार इनपुट का योग दिया जाता है। सिग्मॉइड फ़ंक्शन या हाइपरबोलिक स्पर्श-रेखा फ़ंक्शन जैसे विभिन्न सक्रियण कार्यों का उपयोग किया जाता है। चाहे एएनएन पूरी तरह से जुड़ा हो या नहीं, पूरी तरह से जुड़े एएनएन का उपयोग करना पसंद किया जाता है। एक तंत्रिका नेटवर्क की जटिलता एक छिपी हुई परत (स्तर) के साथ एक साधारण से लेकर कई छिपी परतों के साथ एक बड़े तंत्रिका नेटवर्क तक हो सकती है, जिसे श्मिट्बर ने एक गहरे तंत्रिका नेटवर्क के रूप में परिभाषित किया है।

इनपुट और आउटपुट न्यूरॉन्स की संख्या हल की जा रही समस्या पर निर्भर करती है। एक अर्थ में, एक तंत्रिका नेटवर्क को एक रैखिक वेक्टर -मूल्यवान फ़ंक्शन के रूप में देखा जा सकता है। कई प्रकार के तंत्रिका नेटवर्क मौजूद हैं, जैसे कि फीडफॉरवर्ड एएनएन, कन्वेन्शनल न्यूरल नेटवर्क, या आवर्तक तंत्रिका नेटवर्क। डीप लर्निंग मशीन लर्निंग का एक नया क्षेत्र है, जो आमतौर पर कार्य-विशिष्ट एल्गोरिदम के विपरीत सीखने की जानकारी पर आधारित होता है।

चूंकि आजकल बहुत सारे डेटा कई विविध स्रोतों से उपलब्ध हैं और लगातार उपलब्ध हो रहा है, इसलिए उन्नत डेटा संचालित तकनीकों को अपनाया जा सकता है (जैसा कि नीचे चित्र 3 में दर्शाया गया है)। डीप लर्निंग एक ऐसा क्षेत्र है जो वर्तमान समय की कई समस्याओं का समाधान प्रदान कर सकता है, संचालन की पूरी श्रृंखला को स्वचालित कर सकता है और समग्र-समय को काफी कम कर सकता है। डीप

चित्र 3 : डीप लर्निंग पर डेटा का प्रभाव

लर्निंग को कई समस्याओं जैसे डी-नॉइज़िंग, सुपर-रिज़ॉल्यूशन इमेज के पुनःनिर्माण, पेंटिंग और फिल्म रंगीकरण में प्रभावी ढंग से लागू किया गया है।

डीप लर्निंग, जो कार्यों को निष्पादित करने के लिए तंत्रिका नेटवर्क का उपयोग करता है, के लिए बहुत अधिक कंप्यूटिंग शक्ति की आवश्यकता होती है, जिसे GPU के साथ किया जा सकता है।

डीप लर्निंग की कार्यप्रणाली

डीप लर्निंग में, एल्गोरिथम, इनपुट में गैर-रेखीय रूपांतरण लागू करता है और प्राप्त ज्ञान का उपयोग आउटपुट के रूप में एक सांख्यिकीय मॉडल बनाने के लिए करता है। प्रत्येक स्तर अपने इनपुट को थोड़ा अधिक सार और जटिल प्रतिनिधित्व में बदलना सीखता है। पुनरावृत्ति तब तक बनी रहती है जब तक कि परिणाम स्वीकार्य स्तर तक नहीं पहुंच जाता। डेटा को प्रसंस्करण जानकारी के कितने स्तरों से गुजरना पड़ता है जो लेबल को गहराई तक ले जाता है। ये कार्य और प्रक्रियाएं अमूर्तता के कई स्तरों पर स्वचालित सीखने की सुविधा प्रदान करती हैं, जिससे सिस्टम के माध्यम से जटिल कार्यों को सीखने की अनुमित मिलती है जो सीधे डेटा से इनपुट और आउटपुट को मैप करता है। पूरी तरह से मानव निर्मित कार्यों पर निर्भर नहीं है।

डीप लर्निंग सिस्टम में बहुत सारे क्रेडिट असाइनमेंट पाथ (CAP) हैं। GAP इनपुट से आउटपुट में परिवर्तनों की एक श्रृंखला है। सीएपी इनपुट और आउटपुट के बीच संभावित कारण संबंध का वर्णन करते हैं। फॉरवर्ड न्यूरल नेटवर्क में, सीएपी की गहराई नेटवर्क के बराबर होती है और छिपी हुई परतों की संख्या प्लस वन (क्योंकि आउटपुट परत भी पैरामीटर है)। जहां आवर्तक तंत्रिका नेटवर्क, जहां एक संकेत एक परत के माध्यम से एक से अधिक बार यात्रा कर सकता है, सीएपी की गहराई असीमित हो सकती है।

डीप लर्निंग आर्किटेक्चर अक्सर परत-दर-परत दृष्टिकोण से निर्मित होते हैं। डीप लर्निंग आपको इन अमूर्तताओं को दूर करने में मदद करता है और यह चुनने में मदद करता है कि कौन सी विशेषताएं प्रदर्शन में सुधार करती हैं।

सुदूर संवेदन

रिमोट सेंसिंग, सरल शब्दों में, किसी घटना / घटनाक्रम / विशेषता को दूर से देखने और व्याख्या करने, वास्तव में इसके करीब गए बिना, के रूप में समझाया जा सकता है । दरअसल, सभी जीव रिमोट सेंसिंग करते हैं। उनके पास तीन दूरस्थ संवेदी अंग हैं, अर्थात् आंख, कान और नाक जिसके साथ वे शारीरिक संपर्क की आवश्यकता के बिना देखते, सुनते और सूंघते हैं।

रिमोट सेंसिंग जब उपग्रहों और विमानों पर रिमोट सेंसर के माध्यम से किया जाता है जो पृथ्वी और अन्य ग्रह निकायों के बारे में जानकारी प्राप्त करने के लिए परावर्तित या उत्सर्जित ऊर्जा का पता लगाता है और रिकॉर्ड करता है तो इसका जबरदस्त उपयोग होता है। 1960 के दशक में जब अंतरिक्ष यान में कैमरे और इलेक्ट्रिकल सेंसर लगाए गए, तो उपग्रह रिमोट सेंसिंग का युग शुरू हुआ। रिमोट सेंसर, जो एक वैश्विक परिप्रेक्ष्य और पृथ्वी प्रणालियों के बारे में डेटा का खजाना प्रदान करते हैं, समग्र रूप से हमारे ग्रह की वर्तमान और भविष्य की स्थिति के आधार पर डेटा-सूचित निर्णय लेने में सक्षम बनाते हैं। इसी श्रंखला में एक सरल उदाहरण रिमोट सेंसिंग डेटा है जो एक निश्चित अविध में एक स्थान के लिए दोहराव से लिया जाता है जैसे हर पांचवें दिन वही स्थान किसी भी विश्लेषण या अध्ययन के लिए आवश्यक डेटा की एक श्रंखला प्रदान करेगा।

रिमोट सेंसिंग उन प्रमुख तकनीकों में से एक है जिसने कई देशों, विशेष रूप से तीसरी दुनिया के देशों के सामाजिक और आर्थिक मानकों को बदल दिया है। यह विभिन्न क्षेत्रों से दूर से सूचना प्राप्त करने का एक शक्तिशाली उपकरण है। शहरी विस्तार और आपराधिक गतिविधियों के बीच संबंधों को खोजने के लिए अप्रयुक्त प्राकृतिक संसाधनों से लेकर विभिन्न प्रकार के अनुप्रयोगों में इसका उपयोग किया जा सकता है। रिमोट सेंसिंग डेटा का उपयोग पृथ्वी की सतह की विशेषताओं को समझने के लिए भी किया जा रहा है। उपग्रहों के व्यापक स्थानिक और लौकिक कवरेज के कारण, उनसे प्राप्त जानकारी बहुत बड़ी है और समाज के लिए कई फायदे हैं।

सुदूर संवेदन के कृषि अनुप्रयोग, मुख्य रूप से फसल सांख्यिकी और मृदा मानचित्रण के लिए विकासशील देशों में करना मुश्किल साबित हुआ है। रिमोट सेंसिंग का उपयोग करके सटीक छवि व्याख्या से ऐसे नमूने प्राप्त हो सकते हैं जो वास्तव में कृषि की बढ़ती परिस्थितियों को दर्शाते हैं। रिमोट सेंसिंग आपदा प्रबंधन में बेहद उपयोगी है। रिमोट सेंसिंग डेटा का उपयोग करके बनाए गए मॉडल जंगल की आग, चक्रवात, भूकंप जैसी कई आपदाओं के लिए पूर्व-चेतावनी जानकारी प्रदान करने में मदद करते हैं जो कीमती मानव जीवन और मूल्यवान वस्तुओं को बचाने में मदद करते हैं। इसके अलावा, भूस्खलन, सूखा, बाढ़ जैसी आपदाओं के लिए; रिमोट सेंसिंग डेटा जो लगातार एकत्र और संसाधित किया जाता है, आपदा प्रबंधन और राहत कार्यों में मदद करता है तािक पूरे समाज और देश की मदद की जा सके।

हालांकि, कई बार उपग्रह इमेजरी में अंतराल क्षेत्र होते हैं, मुख्य रूप से क्लाउड उपस्थिति के कारण, जो बड़े पैमाने पर उनकी गुणवत्ता को प्रभावित करता है और पृथ्वी अवलोकन उद्देश्य के लिए उनकी उपयोगिता को सीमित करता है। इसके अलावा, कई बार तकनीकी गड़बड़ियों के कारण डेटा निम्न गुणवत्ता का हो सकता है और कुछ अपरिहार्य मानवीय त्रुटियों या पर्यावरणीय कारकों के कारण छूट जाता है।

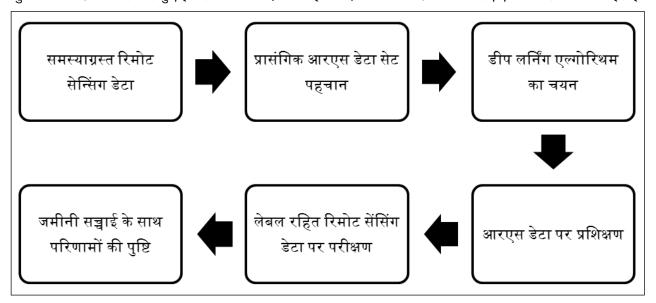
सुदूर संवेदन में डीप लर्निंग का महत्व

उपग्रह इमेजरी में विकृतियों के परिणामस्वरूप पिक्सेल हानि होती है। खोए या दूषित पिक्सेल को कोई डेटा मान नहीं माना जाता है और उन्हें पुनर्प्राप्त किया जाना चाहिए। चूंकि बादल ऑप्टिकल रिमोट सेंसिंग इमेजरी में मुख्य बाधा हैं और भारत में उष्णकटिबंधीय जलवायु है जिसमें भारतीय अर्थव्यवस्था में कृषि का महत्वपूर्ण योगदान है, बादलों को हटाना और रिमोट सेंसिंग इमेजरी का पुनर्निर्माण चिंता का एक प्रमुख क्षेत्र है और आज भी एक महत्वपूर्ण चुनौती है।

उपग्रह इमेजरी में बादलों की उपस्थिति और प्रभाव कई कारकों पर निर्भर करता है, जैसे मौसम, इलाके या अध्ययनाधीन क्षेत्र की स्थलाकृति और उपग्रह डेटा / उपग्रह पुनरीक्षण अवधि की आवृत्ति पर भी जो अप्रत्यक्ष रूप से उपग्रह रेसोल्यूशन पर निर्भर करता है।

विभिन्न स्रोतों से विशाल डेटा की उपस्थिति रिमोट सेंसिंग के क्षेत्र में भी गहन शिक्षण के अनुप्रयोग का पता लगाने के लिए प्रेरणा है। डीप लर्निंग एल्गोरिदम और मॉडल प्रशिक्षण डेटा सेट पर काम करते हैं।

हमारे पास जितना अधिक डेटा होगा, प्रशिक्षण उतना ही मजबूत होगा और बेहतर आउटपुट आएगा।

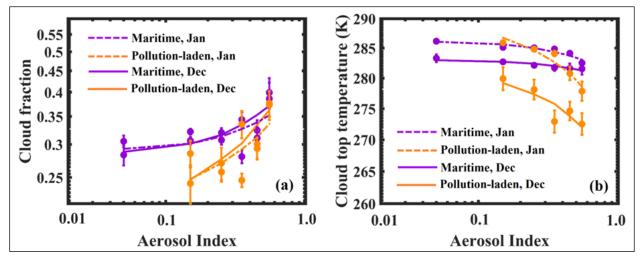


मशीन लर्निंग और डीप लर्निंग तकनीक पहले ही छवि वर्गीकरण, विभाजन, प्राकृतिक भाषा प्रसंस्करण आदि में अपनी दक्षता साबित कर चुकी हैं। अब, उन्हें उपग्रह इमेजरी के क्षेत्र में भी खोजा जा रहा है। कई डीप लर्निंग एल्गोरिदम और मॉडल छवि वर्गीकरण, विभाजन और बहाली कार्यों के लिए अपनी दक्षता साबित कर चुके हैं।

निष्कर्षः

वर्तमान समय में डीप लर्निंग एक महत्वपूर्ण तकनीक बन गई है। इसने विभिन्न क्षेत्रों में भी अपनी उत्कृष्टता साबित की है। चूंकि आज लगातार प्राप्त आंकड़ों की भारी मात्रा मौजूद है, इसलिए रिमोट सेंसिंग के क्षेत्र में भी गहन शिक्षण एल्गोरिदम और मॉडलों के अनुप्रयोग का पता लगाया जा रहा है।

वर्तमान अध्ययन के साथ, वे विभिन्न समस्याओं को हल करने, विशेष रूप से डेटा हानि पर काबू पाने और उपग्रह इमेजरी के पुनर्निर्माण में उपयोगी साबित हुए हैं। लगभग सभी क्षेत्रों में गहन शिक्षा के व्यापक उपयोग के लिए एक विशाल भविष्य निहित है।



अरब सागर की मानवजनित प्रदूषित परिस्थितियों में एरोसोल-क्लाउड संबंध:

शिवाली वर्मा, एनआरएससी, हैदराबाद

एक ही बड़े पैमाने पर मौसम विज्ञान और स्पोटियो-टेम्पोरल डोमेन के प्रभाव के तहत, अरब सागर के ऊपर मानवजिनत प्रदूषित परिस्थितियों और अपेक्षाकृत समुद्री परिस्थितियों में बादलों पर एरोसोल के प्रभाव का मूल्यांकन किया गया है। 2018 के सिर्दियों के महीनों के लिए दैनिक माध्य क्लाउड प्रॉपर्टीज, यानी, जियोस्टेशनरी सैटेलाइट (INSAT-3D) से क्लाउड फ्रैंक्शन (सीएफ) और क्लाउड टॉप टेम्परेचर (सीटीटी) और MODIS से एयरोसोल प्रॉपर्टीज के बीच संबंध की जांच की गई है। सिर्दियों के दौरान, व्यापारिक हवाएँ बड़ी मात्रा में महाद्वीपीय एरोसोल को अरब सागर में पहुँचाती हैं, जहाँ स्ट्रैटोक्यूम्यलस क्लाउड परतों का अर्धस्थायी क्षेत्र मौजूद है। समुद्री और प्रदूषित परिस्थितियों के दौरान दोनों मेघ गुणों में स्पष्ट अंतर देखा गया है। सीएफ और सीटीटी पर एरोसोल-क्लाउड इंटरैक्शन की ताकत प्रदूषित परिस्थितियों के लिए क्रमशः 0.3 और -0.02 है और समुद्री परिस्थितियों के लिए क्रमशः 0.1 और -0.005 है, एयरोसोल इंडेक्स में 0.0 से 0.6 की वृद्धि के साथ। प्रदूषित परिस्थितियों में उच्च परत पर एरोसोल को अवशोषित करने के विकिरण प्रभाव प्रमुख रूप से क्लाउड गुणों में देखे गए परिवर्तनों को प्रेरित करते हैं। यह भी देखा गया है कि स्ट्रैटस क्लाउड्स के ऊपर उच्च अवशोषित एयरोसोल परतें निम्न-स्तरीय क्लाउड कवर को बढ़ाती हैं। इसके अलावा, ऊंचे अवशोषित एरोसोल के कारण वार्मिंग, आपस में जुड़ी हुई क्यूम्यलस क्लाउड लेयर्स को कम करती है और साथ ही एलिवेटेड प्रदूषण लेयर के ऊपर बढ़ती क्लाउड लेयर्स के विकास को बढ़ाती है।

एयरोसोल और क्लाउड परतों की पारस्परिक स्थिति के संबंध में क्लाउड मैक्रोफिजिकल गुणों में देखे गए परिवर्तन इस क्षेत्र पर एक अधिक जटिल क्लाउड शासन-निर्भर प्रक्रिया का सुझाव देते हैं।

जैव-विविधता भू-सूचना सुविधा

डॉ. देवाशीष चक्रवर्ती एवं आरती पॉल, आरआरएससी,कोलकाता

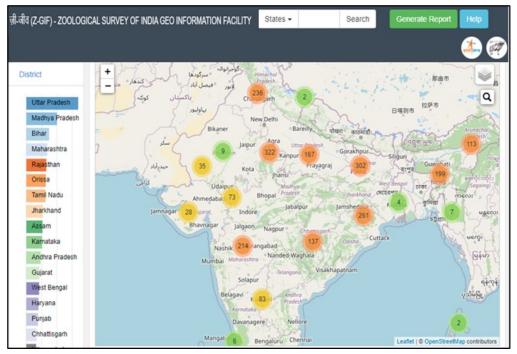
भारत अपने विविध आवास और जलवायु परिस्थितियों के कारण जैव-विविधता के मामले में बहुत समृद्ध है और दुनिया के 17 विशाल जैव-विविधता वाले देशों में से एक है। भारत में दुनिया की कुल पशु प्रजातियों के 7% से अधिक प्रजातियाँ हैं। भारतीय प्राणीविज्ञान सर्वेक्षण (जेडएसआई) और क्षेत्रीय सुदूर संवेदन केंद्र-पूर्व, कोलकाता, एनआरएससी ने जीवों की प्रजातियों की डिजिटल सूची तैयार करने की दिशा में काम किया है। "भारतीय जैव-विविधता भू-सूचना सुविधा" नामक परियोजना का प्रमुख उद्देश्य देश की जीव प्रजातियों की निगरानी और संरक्षण के लिए सर्वेक्षण आँकड़ों को प्राप्त, प्रबंधित और विश्लेषण करने के लिए भू-स्थानिक प्रौद्योगिकियों के कार्यान्वयन के माध्यम से जेडएसआई को मजबूत करना है। इस संदर्भ में, भारतीय प्राणीविज्ञान सर्वेक्षण भू-सूचना सुविधा (जेड-जीआईएफ) बनाई गई है, जिसमें स्थानिक और कालिक मोड में जीव प्रजातियों के सर्वेक्षण आँकड़ों के दृश्यन और विश्लेषण करने हेतु भू-संलग्न (जियोटैग्ड) तस्वीरों के साथ-साथ भू-स्थानिक आँकड़ां विश्लेषणात्मक उपकरण (चित्र 1 बी) के साथ जीव सर्वेक्षण आँकड़ों को एकत्र करने के लिए एक मोबाइल ऐप (चित्र 1 ए) शामिल है।

Export to csv
Open File Location

Bastar
Date
18-02-2021

456

Serial No
e4
Locality
Badalkhol
Date
18-02-2021


3
Serial No
e3
Locality
achanakmar
Date
12-04-2021

चित्र 1: जेड-जीआईएफ: (a) मोबाईल अनुप्रयोग,

परियोजना की प्रमुख विशेषताएं हैं:

- एंड्रॉइड एप्लिकेशन के साथ डिजिटल रूप में सर्वेक्षण आँकड़ों का संग्रह करना।
- एक एकीकृत प्रारूप और एकल मंच के रूप में देश के जीवों की प्रजातियों के आँकड़ों का प्रतिनिधित्व।
- मानचित्र, चार्ट और ग्राफ के साथ स्थानिक और कालिक मोड में जैव आँकड़ों का गतिशील डैशबोर्ड दृश्यन।
- वर्गीकरण खोज और प्रतिपादन।
- प्रजाति विशेष सूचना की विस्तृत प्रस्तृति

मुख्य लाभ: (1) न्यूनतम मानव संपर्क के साथ सम्बंधित क्षेत्र हेतु एक मानक प्रारूप में सर्वेक्षण आँकड़ों का व्यवस्थित संग्रह। (2) न्यूनतम प्रयास और जन शक्ति के साथ जैव-विविधता की निगरानी और संरक्षण।

(b) डेस्कटॉप अनुप्रयोग

चित्र 2: जेड-जीआईएफ का निदेशक (जेडएसआई), कोलकाता द्वारा विमोचन

इस परियोजना में, भारतीय प्राणी विज्ञान सर्वेक्षण भू-सूचना सुविधा (जेड-जीआईएफ) मोबाईल और डेस्कटॉप अनुप्रयगों को 20 अप्रैल, 2021 को निदेशक (जेडएसआई), कोलकाता द्वारा सफलतापूर्वक विमोचित किया गया (चित्र-2)

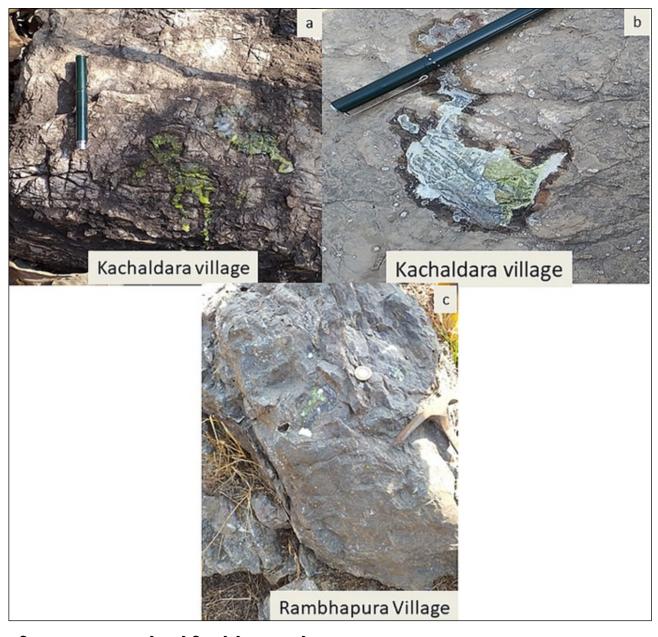
उर्वरक खनिज के लिए स्रोत/ रिजर्व रॉक को लक्षित करने के लिए सुदूर संवेदन

डॉ . अरिंदम गुहा, आरआरएससी, कोलकाता

रॉक फॉस्फेट का अपने व्यावसायिक मूल्य के लिए अत्यधिक महत्व है क्योंकि यह उर्वरक उद्योग के लिए महत्वपूर्ण कच्चे मालों में से एक है। फास्फोरस कृषि गतिविधियों के लिए महत्वपूर्ण माना जाता है क्योंकि यह पौधे की वृद्धि के लिए महत्वपूर्ण है। भारत जैसे देशों में जनसंख्या वृद्धि में तेजी से वृद्धि रॉक फॉस्फेट जैसे उर्वरक संसाधनों की बढ़ती आवश्यकता की मांग करती है। इस सम्बन्ध में सुदूर संवेदन, फील्ड स्पेक्ट्रा और सतह भू-रासायनिक आंकड़ों का उपयोग करके रॉक फॉस्फेट मानचित्रण के लिए एक राष्ट्रीय परियोजना को क्रियान्वित किया गया है। राष्ट्रीय सुदूर संवेदन केंद्र, इसरो ने इस परियोजना में प्रमुख भूमिका निभाई है।

प्रारंभ में अन्वेषण और अनुसंधान के लिए भारतीय भूवैज्ञानिक सर्वेक्षण और परमाणु खनिज निदेशालय के सहयोग से एक परीक्षण (पायलट) गतिविधि की गई थी। इस पायलट प्रोजेक्ट में, कार्बोनेट रॉक के भीतर रॉक फॉस्फेट की सतह की अनावृत्ति को चित्रित करने हेतु उन्नत अंतिरक्ष जिनत उष्मीय उत्सर्जन और प्रतिबिंब रेडियोमीटर (एएसटीईआर) और चट्टानों के प्रयोगशाला स्पेक्ट्रा के वर्णक्रमीय बैंड का उपयोग करके एक पद्धित विकसित की गई है। विभिन्न कार्बोनेट चट्टानों जैसे डोलोमाइट, चूना पत्थर, कैलकेरियस शेल आदि पैलियोप्रोटेरोज़ोइक और मेसोप्रोटेरोज़ोइक युग के रॉक फॉस्फेट जमा की स्रोत चट्टान हैं। इस परियोजना के तहत, लौह समृद्ध कार्बोनेट चट्टानों की वर्णक्रमीय विशेषता को बढ़ाने के लिए प्रमुख घटकों के ईजिन वेक्टर विश्लेषण के आधार पर डोलोमाइट और संबंधित कार्बोनेट चट्टानों की पहचान करने के लिए एक दृष्टिकोण निकाला गया था। इसके बाद, डोलोमाइट की स्थानिक सीमा के भीतर फॉस्फोराइट को चित्रित करने के लिए एस्टर (ASTER) वर्णक्रमीय बैंड पर वर्णक्रमीय उप

-पिक्सेल मानचित्रण एलगोरिथ्म लागू किया गया था। जमीन में फॉस्फेट की उपस्थित की पृष्टि के लिए फील्ड अधारित त्वरित वर्णमिति पद्धित का उपयोग किया गया था। अंत में, पहचाने गए नए विसंगति क्षेत्रों में फॉस्फेट सामग्री की पृष्टि के लिए विसंगति क्षेत्रों में फॉस्फेट सामग्री की पृष्टि के लिए विसंगति क्षेत्र से एकत्र किए गए नमूनों के एक्स-रे प्रतिदीप्ति डेटा का उपयोग किया गया था। हमने भारत के मध्य प्रदेश के छतरपुर जिले और झाबुआ जिले में फॉस्फेट ओपन कास्ट खनन ज्ञात खनिज भंडार से परे क्षेत्र में फॉस्फोराइट की कुछ नये संभावित क्षेत्रों की पहचान की है।



चित्र 1 : (ए) हीरापुर खदान से सुरजापुरा क्षेत्र तक के खंड के बीच नए विस्तार का अनावृत भूतल।

- (बी) अम्लीय अमोनियम मोलिब्डेट घोल का उपयोग करके अनावृत रॉक फॉस्फेट का वर्णमिति उपचार।
- (सी) सूरजपुरा क्षेत्र में रॉक फॉस्फेट विसंगति।
- (डी) सूरजपुरा क्षेत्र में वर्णमिति उपचार अनावृत रॉक फॉस्फेट । भारतीय भूवैज्ञानिक सर्वेक्षण ने अध्ययन में मुख्य सहयोगी के रूप में भाग लिया है।

चित्र 2 .ए. कचलदरा गांव में फास्फेटिक डोलोमाइट एक्सपोजर। बी. कचलदरा गांव में फॉस्फेटिक चर्ट पत्थर ; वर्णमिति विश्लेषण के दौरान बनने वाले पीले हरे रंग के अवक्षेप सी. रंभापुरा गांव में फास्फेटिक डोलोमाइट; वर्णमिति विश्लेषण के कारण पीले हरे रंग का अवक्षेप बनता है।

जैव विविधता अध्ययन - संतरागाछी झील

अंकुश मित्रा, एनआरएससी, हैदराबाद

जीव विज्ञान जीवों/प्राणियों का वैज्ञानिक अध्ययन है। जिसमें वे कैसे विकसित होते हैं, प्रजनन करते हैं, पर्यावरण और अन्य प्रजातियों के साथ कैसे व्यवहार करते हैं आदि का अध्ययन है। जीव विज्ञान के किसी भी विषय का अध्ययन करना सजीव जगत के स्पर्श के बिना अधूरा है, जो कक्षाओं से बहुत आगे तक विस्तृत है। छात्रों को दिए गए व्याख्यान उन्हें विषय पर प्रत्यक्ष ज्ञान प्राप्त करने में मदद करते हैं। लेकिन अध्ययन की पूर्णता के लिए और पूर्णता की ऊंचाई तक पहुंचने के लिए प्रासंगिक विषय पर व्यावहारिक कार्य आवश्यक हैं।

प्राणी जगत को समझने के लिए अध्ययन यात्रा में जाना और जानवरों का निरीक्षण करना महत्वपूर्ण है। इस समुदाय में प्रवेश करने के लिए यह सीखना जरूरी है कि - इस विषय का शास्त्रीय तरीका कैसे काम करता है। अध्ययन यात्रा इसी दिशा में एक छोटा कदम है। यह हमें बहुत कुछ सीखने और सोचने जैसे बहुत कुछ देता है। कुछ साल पहले, मैंने क्षेत्रीय अध्ययन के लिए एक जलीय पारिस्थितिकी तंत्र - संतरागाछी झील को चुना था।

झील का विवरण

संतरागाछी झील:

संतरागाछी (हावडा, पश्चिम बंगाल, भारत) रेलवे स्टेशन के बगल (पास) में स्थित है। यह एक बडी झील है और एक महत्वपूर्ण पारिस्थितिक क्षेत्र भी है, जिसे रामसर साइट (नंबर 1208) के रूप में वर्गीकृत किया गया है। संतरागाछी झील ने बहुत स्थानीय और वैश्विक ध्यान आकर्षित किया है। संतरागाछी झील का कुल क्षेत्रफल 10.87 हेक्टेयर है। झील का आकार लगभग आयताकार

है, लंबाई लगभग 915 मीटर है। और चौड़ाई 305 मीटर, परिधि लगभग 2418 मीटर है। औसत गहराई 4 से 7 फीट के बीच होती है। यह झील सर्दियों के महीनों में - विशेष रूप से दिसंबर और जनवरी में बड़ी संख्या में प्रवासी पक्षियों को आकर्षित करती है।

मुख्य जल निकाय, जिसे स्थानीय रूप से माखल के नाम से जाना जाता है, छह झीलों से घिरा हुआ है, जिनमें से पांच रेलवे भूमि पर हैं और छठा एक गैर सरकारी संपत्ति है। माखल सीधे त्रिकोणीय झील- त्रिनाथ से जुडा हुआ है, जो तीन अन्य- लोकोटैंक, कीर्तिबास और तलतला से जुड़ा हुआ है। ये

सभी झीलें आपस में जुड़ी हुई हैं। तलतला एक अन्य झील- सुल्तानपुर झील से भी जुड़ा है। यह झील सीधे एक स्थानीय नहर-मौखल- तक खुलती है जो अंत में हुगली नदी की ओर जाती है।

संतरागाछी झील दक्षिण-पूर्वी रेलवे और पश्चिम बंगाल के वन विभाग की संपत्ति है।

स्थान विवरण

क्षेत्रफल: 1,37,500 वर्ग फुट।

निर्देशांक: अक्षांश 22°34' 52.8" N

देशांतर 88°16'59.8" E

जलवायु: धूप और आर्द्र। बारिश का मौसम में उच्च वर्षा।

तापमान: गर्मी (अप्रैल - सितंबर) >

उच्चतम: 37°C / न्यूनतम: 28°C

सर्दी (नवंबर - फरवरी) > उच्चतम: 30°C / न्यूनतम: 13°C

क्रमांक	वैज्ञानिक नाम	आवासीय स्थिति	पहचान	संख्या गिनें	चित्र
1	Dendrocygna javanica	भारतीय उपमहाद्वीप और दक्षिण-पूर्व एशिया की तराई आर्द्रभूमि	भूरे रंग और लंबी गर्दन वाली बत्तख। चौड़े पंख होते हैं जो उड़ान में दिखाई देते हैं।	175	
2	Anas strepera	यूरोप, एशिया और मध्य उत्तरी अमेरिका के उत्तरी क्षेत्र	एक खड़ी माथे के साथ एक काफी बड़ा, चौकोर सिर है। आमतौर पर ग्रे-ब्राउन रंग। दोनों लिंगों में एक सफेद पंख वाला पैच होता है जो कभी- कभी तैरते या आराम करते समय दिखाई देता है।	2	
3	Anas acuta	यूरेशिया के उत्तरी क्षेत्र दक्षिण में पोलैंड, मंगोलिया कनाडा और अलास्का	मध्यम आकार वाले, पूंछ नुकीली और गर्दन पतली, लंबी होती है।	7	A
4	Anas crecca	उत्तरी यूरेशिया	सिर लाल-भूरा, हरे रंग का पैच, ग्रे-ब्राउन बैक, ब्राउन ब्रेस्ट और पीले अंडर-टेल पैच के साथ।	2	
5	Nettapus cor- omandelianus	पाकिस्तान, भारत, बांग्लादेश, दक्षिण पूर्व एशिया और उत्तरी ऑस्ट्रेलिया में भी	पंख में सफेद प्रबल-एस। बिल छोटा।	2	
6	Microcarbo niger	भारत, श्रीलंका, बांग्लादेश, नेपाल के कुछ हिस्सों, बर्मा और थाईलैंड	लगभग 50 सेंटीमीटर लंबा।	5	

6	Microcarbo niger	भारत, श्रीलंका, बांग्लादेश, नेपाल के कुछ हिस्सों, बर्मा और थाईलैंड	लगभग 50 सेंटीमीटर लंबा।	5	
7	Ardeola grayii	भारत और दक्षिणी ईरान और पूर्व में पाकिस्तान, भारत, बांग्लादेश, बर्मा और श्रीलंका में आम है	छोटी गर्दन, छोटी मोटी चोंच और बफ़-ब्राउन बैक के साथ स्टॉकी	8	
8	Dicrurus macro- cercus	इंडो-मलय क्षेत्र, अफ्रीका	पूंछ के लिए एक विस्तृत कांटा के साथ चमकदार काला	3	
9	Bubulcus ibis	दक्षिणी स्पेन, पुर्तगाल, उष्णकटि बंधीय और उपोष्ण कटिबंधीय एशिया और अफ्रीका	छोटी मोटी गर्दन और मध्यम लंबाई, चौड़े, गोल पंख होते हैं।	5	
10	Halcyon smyrnensis	एशिया में व्यापक रूप से तुर्की से पूर्व में भारतीय उपमहाद्वीप के माध्यम से फिलीपींस तक विस्तारित है	एक चमकदार नीली पीठ, पंख और पूंछ है। इसका सिर, कंधे, भुजाएँ और निचला पेट शाहबलूत होता है, और गला सफेद होते हैं। बड़ा चोंच और पैर चमकीले लाल होते हैं।	1	
11	Metopidius I ndicus	भारत और दक्षिण पूर्व एशिया	मुख्य रूप से काले, हालांकि भीतरी पंख गहरे भूरे रंग के होते हैं और पूंछ लाल होती है। एक आकर्षक सफेद आंख की पट्टी है। बिल पीला और पैर ग्रे हैं।	1	

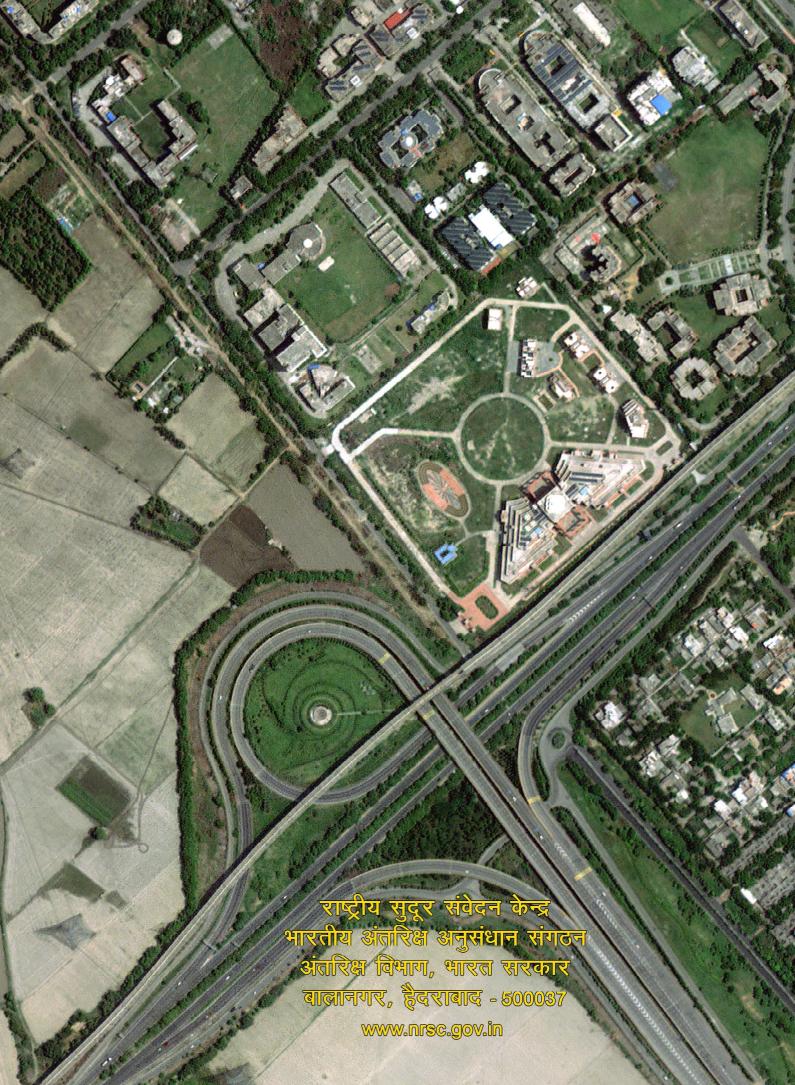
संवाद

12	Amaurornis phoenicurus	दक्षिण पूर्व एशिया और भारतीय उपमहाद्वीप	एक साफ सफेद चेहरे, स्तन और पेट के साथ गहरे भूरे रंग के ऊपरी हिस्से और किनारे	1	
13	Gallinula chloropus	ध्रुवीय क्षेत्र को छोड़कर पूरे विश्व में	सफेद अंडरटेल, पीले पैर और लाल ललाट ढाल के अलावा गहरे रंग के पंख हों	2	

विचार - विमर्श

इस यात्रा ने मुझे जलीय पारिस्थितिकी तंत्र के विभिन्न पहलुओं के बारे में ज्ञान प्राप्त करने में मदद की है। पारिस्थितिकी तंत्र और जैव विविधता का एक संक्षिप्त विचार वनस्पतियों और जीवों, विशेष रूप से प्रवासी पक्षियों और निवासी स्थानीय पिक्षयों को देखकर प्राप्त किया गया था।

झील रेलवे क्वार्टर, दुकानों, रेलवे यार्ड, कई औद्योगिक इकाइयों, घरेलू और वाणिज्यिक मवेशी शेड सिहत मानव निवास से सभी तरफ से घिरी हुई है। स्थानीय लोगों द्वारा अपशिष्ट पदार्थ और सीवेज इनलेट को डंप करने से झील प्रदूषित हो जाती है। झील के पानी में गंदी स्थिति देखी गई है। मैंने जल संग्रह किया था और पीएच, लवणता, कुल घुलित विलेय, घुले हुए O2 जैसे कुछ मापदंडों का विश्लेषण किया। परिणाम ने संकेत दिया कि पानी जलीय जीवन के लिए उपयुक्त है, लेकिन पीने के लिए बहुत अधिक अनुमत नहीं है। हालांकि, मानवजनित गतिविधियों पर अंकुश लगाया जाना चाहिए।


एक बेहतर विश्लेषण के लिए, हमें पूरे वर्ष इस क्षेत्र की मौसमी भिन्नता के साथ निगरानी करने की आवश्यकता है और एक वर्ष में दिए गए समय के परिणाम की तुलना दूसरे वर्ष के समान समय में प्राप्त परिणाम से भी की जानी चाहिए। हाल ही में खबर आई थी कि झील में आने वाले प्रवासी पिक्षयों की संख्या अविवेकपूर्ण मानव जिनत गतिविधियों, यानी फेंके गए कचरे, अवैध निर्माण और मानव निवास के प्रभाव से हो सकती है। जैव विविधता अध्ययन ने प्रकृति और इसके संरक्षण के प्रति जिम्मेदारी की भावना बढ़ाने का भी काम किया।

निष्कर्ष :

संतरागाछी झील एक महत्वपूर्ण पारिस्थितिक क्षेत्र है और इसलिए इस राष्ट्रीय विरासत को संरक्षित करने के लिए उचित संरक्षण उपाय किए जाने चाहिए। प्रवासी पिक्षयों की संख्या में तेजी से गिरावट आ रही है जो संभवत: झील में अजैविक और जैविक दोनों तरह के कचरे के डंपिंग के कारण है। विभिन्न प्रकार के अपिशष्ट जिनमें विभिन्न पोषक तत्व होते हैं, मुख्य रूप से डिटर्जेंट या सीवेज से फॉस्फेट, जो जलीय पौधों के साथ झील के अधिकांश क्षेत्र को कवर करता है। इस प्रकार इसे एक यूट्रोफिक झील में पिरवर्तित कर देता है। झील में कचरे के डंपिंग को सख्ती से प्रतिबंधित किया जाना चाहिए जो कि यूट्रोफिकेशन का मुख्य कारण है। प्रकृति के प्राचीन रूप को संरक्षित करने और बनाए रखने के लिए उचित रूढ़िवादी उपाय किए जाने चाहिए।

